文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells.

作者信息

Chen Mi, Bhattarai Nimisha, Cong Mingyan, Pérez Rocío L, McDonough Karen C, Warner Isiah M

机构信息

Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA

AgCenter Biotechnology Labs, Louisiana State University Baton Rouge LA 70803 USA.

出版信息

RSC Adv. 2018 Sep 12;8(55):31700-31709. doi: 10.1039/c8ra05484c. eCollection 2018 Sep 5.


DOI:10.1039/c8ra05484c
PMID:35548210
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9085727/
Abstract

Herein, a simple counter-ion variation strategy is proposed and demonstrated for design of an array of near infrared IR780-based nanoGUMBOS (nanomaterials from a Group of Uniform Materials Based on Organic Salts) to produce enhanced anticancer activity. These nanomaterials were synthesized by direct nanoengineering of IR780-based GUMBOS using a reprecipitation method, without addition of any other materials. Thus, these novel nanomaterials can serve as carrier-free nanodrugs, providing several distinct advantages over conventional chemotherapeutics. Examination of the size and stability of these nanoGUMBOS indicates formation of approximately 100 nm nanoparticles that are stable under biological conditions. Interestingly, chemotherapeutic applications of these nanoGUMBOS indicate two to four-fold enhanced toxicity towards breast cancer cells as compared to the parent dye, while still maintaining minimal toxicity towards normal cells. The mechanism of cancer toxicity for these nanoGUMBOS was also examined by a study of their sub-cellular localization as well as using a mitochondrial toxicity assay. Analyses of data from these studies revealed that all nanoGUMBOS primarily accumulate in the mitochondria of cancer cells and produce dysfunction in the mitochondria to induce cell death. Using these studies, we demonstrate tunable properties of IR780-based nanoGUMBOS through simple variation of counter-ions, thus providing a promising strategy for future design of better nanomedicines to be used for cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/907ca55e79ea/c8ra05484c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/049f04db993a/c8ra05484c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/da8ebbe3bcbb/c8ra05484c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/20cdb7d38e86/c8ra05484c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/8f6ac55a9757/c8ra05484c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/fde38893c268/c8ra05484c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/020eb513ffe7/c8ra05484c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/9d264dc52665/c8ra05484c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/907ca55e79ea/c8ra05484c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/049f04db993a/c8ra05484c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/da8ebbe3bcbb/c8ra05484c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/20cdb7d38e86/c8ra05484c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/8f6ac55a9757/c8ra05484c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/fde38893c268/c8ra05484c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/020eb513ffe7/c8ra05484c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/9d264dc52665/c8ra05484c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8849/9085727/907ca55e79ea/c8ra05484c-f8.jpg

相似文献

[1]
Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells.

RSC Adv. 2018-9-12

[2]
Tumor-Targeting NIRF NanoGUMBOS with Cyclodextrin-Enhanced Chemo/Photothermal Antitumor Activities.

ACS Appl Mater Interfaces. 2019-7-26

[3]
Enhanced chemotherapeutic toxicity of cyclodextrin templated size-tunable rhodamine 6G nanoGUMBOS.

J Mater Chem B. 2018-9-14

[4]
Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS.

Molecules. 2020-7-17

[5]
Endocytic Selective Toxicity of Rhodamine 6G nanoGUMBOS in Breast Cancer Cells.

Mol Pharm. 2018-7-27

[6]
Strategies for controlled synthesis of nanoparticles derived from a group of uniform materials based on organic salts.

J Colloid Interface Sci. 2015-5-15

[7]
Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS.

Langmuir. 2010-8-3

[8]
Near-infrared fluorescent nanoGUMBOS for biomedical imaging.

ACS Nano. 2009-12-22

[9]
Photothermal response of near-infrared-absorbing NanoGUMBOS.

Appl Spectrosc. 2014

[10]
Ultrafast and nonlinear spectroscopy of brilliant green-based nanoGUMBOS with enhanced near-infrared emission.

J Chem Phys. 2017-10-14

引用本文的文献

[1]
Dynamic-Covalent Mesoporous Silica Nanohybrid with pH/ROS-Responsive Drug Release for Targeted Tumor Therapy.

ACS Omega. 2024-11-18

[2]
"Seasoning" antimalarial drugs' action: chloroquine bile salts as novel triple-stage antiplasmodial hits.

RSC Med Chem. 2024-5-10

[3]
Studies of Protein Binding to Biomimetic Membranes Using a Group of Uniform Materials Based on Organic Salts Derived From 8-Anilino-1-naphthalenesulfonic Acid.

Appl Spectrosc. 2024-8

[4]
Doxorubicin-Based Ionic Nanomedicines for Combined Chemo-Phototherapy of Cancer.

ACS Appl Nano Mater. 2024-1-26

[5]
Antibiotics Coupled with Photothermal Therapy for the Enhanced Killing of Bacteria.

J Biochem Technol. 2023

[6]
Investigating Effects of IR-780 in Animal Models of B16-F10 Melanoma: New Approach in Lung Metastasis.

Molecules. 2023-10-5

[7]
Fluorescent Ionic Probe for Determination of Mechanical Properties of Healed Poly(ethylene--methacrylic acid) Ionomer Films.

ACS Appl Polym Mater. 2022-2-11

[8]
Enhanced photothermal heating and combination therapy of NIR dye conversion to self-assembled ionic nanomaterials.

J Mater Chem B. 2022-2-2

[9]
Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS.

Molecules. 2020-7-17

[10]
Targeting strategies for improving the efficacy of nanomedicine in oncology.

Beilstein J Nanotechnol. 2019-1-14

本文引用的文献

[1]
Mitochondrial-Targeting Lonidamine-Doxorubicin Nanoparticles for Synergistic Chemotherapy to Conquer Drug Resistance.

ACS Appl Mater Interfaces. 2017-12-7

[2]
Mitochondria-targeting near-infrared light-triggered thermosensitive liposomes for localized photothermal and photodynamic ablation of tumors combined with chemotherapy.

Nanoscale. 2017-8-10

[3]
Trackable Mitochondria-Targeting Nanomicellar Loaded with Doxorubicin for Overcoming Drug Resistance.

ACS Appl Mater Interfaces. 2017-7-24

[4]
Exceptionally High Payload of the IR780 Iodide on Folic Acid-Functionalized Graphene Quantum Dots for Targeted Photothermal Therapy.

ACS Appl Mater Interfaces. 2017-6-28

[5]
Cellular uptake of nanoparticles: journey inside the cell.

Chem Soc Rev. 2017-7-17

[6]
Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug Resistance.

ACS Appl Mater Interfaces. 2017-5-10

[7]
Cancer nanomedicine: progress, challenges and opportunities.

Nat Rev Cancer. 2017-1

[8]
Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy.

Sci Rep. 2016-6-6

[9]
Cancer treatment and survivorship statistics, 2016.

CA Cancer J Clin. 2016-6-2

[10]
Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy.

ACS Nano. 2016-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索