Suppr超能文献

从宏基因组数据推断抗生素敏感性:梦想还是现实?

Inferring antibiotic susceptibility from metagenomic data: dream or reality?

机构信息

Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France; Service de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France.

Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France; Service de Bactériologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018, Paris, France.

出版信息

Clin Microbiol Infect. 2022 Sep;28(9):1225-1229. doi: 10.1016/j.cmi.2022.04.017. Epub 2022 May 10.

Abstract

BACKGROUND

The diagnosis of bacterial infections continues to rely on culture, a slow process in which antibiotic susceptibility profiles of potential pathogens are made available to clinicians 48 hours after sampling, at best. Recently, clinical metagenomics, the metagenomic sequencing of samples with the purpose of identifying microorganisms and determining their susceptibility to antimicrobials, has emerged as a potential diagnostic tool that could prove faster than culture. Clinical metagenomics indeed has the potential to detect antibiotic resistance genes (ARGs) and mutations associated with resistance. Nevertheless, many challenges have yet to be overcome in order to make rapid phenotypic inference of antibiotic susceptibility from metagenomic data a reality.

OBJECTIVES

The objective of this narrative review is to discuss the challenges underlying the phenotypic inference of antibiotic susceptibility from metagenomic data.

SOURCES

We conducted a narrative review using published articles available in the National Center for Biotechnology Information PubMed database.

CONTENT

We review the current ARG databases with a specific emphasis on those which now provide associations with phenotypic data. Next, we discuss the bioinformatic tools designed to identify ARGs in metagenomes. We then report on the performance of phenotypic inference from genomic data and the issue predicting the expression of ARGs. Finally, we address the challenge of linking an ARG to this host.

IMPLICATIONS

Significant improvements have recently been made in associating ARG and phenotype, and the inference of susceptibility from genomic data has been demonstrated in pathogenic bacteria such as Staphylococci and Enterobacterales. Resistance involving gene expression is more challenging however, and inferring susceptibility from species such as Pseudomonas aeruginosa remains difficult. Future research directions include the consideration of gene expression via RNA sequencing and machine learning.

摘要

背景

细菌感染的诊断仍然依赖于培养,这是一个缓慢的过程,潜在病原体的抗生素药敏谱在采样后最好也需要 48 小时才能提供给临床医生。最近,临床宏基因组学作为一种潜在的诊断工具已经出现,它可以对样本进行宏基因组测序,以识别微生物并确定它们对抗菌药物的敏感性,其速度可能比培养更快。临床宏基因组学确实有潜力检测与耐药相关的抗生素耐药基因(ARGs)和突变。然而,要使从宏基因组数据中快速推断抗生素药敏表型成为现实,还有许多挑战需要克服。

目的

本叙述性综述的目的是讨论从宏基因组数据中推断抗生素药敏表型所面临的挑战。

资料来源

我们使用国家生物技术信息中心 PubMed 数据库中可获得的已发表文章进行了叙述性综述。

内容

我们回顾了当前的 ARG 数据库,特别强调了那些现在提供与表型数据关联的数据库。接下来,我们讨论了旨在识别宏基因组中 ARGs 的生物信息学工具。然后,我们报告了从基因组数据推断表型的性能以及预测 ARG 表达的问题。最后,我们解决了将 ARG 与宿主联系起来的挑战。

意义

最近在关联 ARG 和表型方面取得了重大进展,并且已经在葡萄球菌和肠杆菌等致病菌中证明了从基因组数据推断药敏的可行性。然而,涉及基因表达的耐药性更具挑战性,并且从铜绿假单胞菌等物种推断药敏仍然很困难。未来的研究方向包括通过 RNA 测序和机器学习考虑基因表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验