文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

临床宏基因组学预测儿童重症肺炎患者的抗菌药物耐药性

Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients.

机构信息

Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, People's Republic of China.

Department of Neonatology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

出版信息

Ann Clin Microbiol Antimicrob. 2024 Apr 15;23(1):33. doi: 10.1186/s12941-024-00690-7.


DOI:10.1186/s12941-024-00690-7
PMID:38622723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11020437/
Abstract

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS: We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS: mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.

摘要

背景:抗菌药物耐药性(AMR)是儿童健康的主要威胁,尤其是在呼吸道感染方面。准确识别病原体和 AMR 对于靶向抗生素治疗至关重要。宏基因组下一代测序(mNGS)在直接检测临床样本中的微生物和耐药基因方面显示出前景。然而,mNGS 检测在预测 AMR 方面的准确性需要进一步研究,以便为实际的临床决策提供依据。

方法:我们旨在评估 mNGS 在预测儿童重症肺炎 AMR 方面的性能。我们在 2022 年 5 月至 2023 年 5 月期间在一家三级医院进行了回顾性分析。对来自患有重症肺炎的儿科患者的支气管肺泡灌洗液样本同时进行 mNGS 和培养。通过比较 mNGS 检测微生物和抗生素耐药基因的结果与培养的结果,计算了敏感性、特异性、阳性预测值和阴性预测值。

结果:mNGS 检测到细菌的比例为 71.7%(86/120),明显高于培养(58/120,48.3%)。与培养相比,mNGS 检测致病微生物的敏感性为 96.6%,特异性为 51.6%。19 种抗生素的表型药敏试验(PST)显示不同细菌的抗生素耐药率存在显著差异。mNGS 对碳青霉烯类耐药的敏感性预测高于青霉素类和头孢菌素类(67.74%比 28.57%、46.15%),而特异性无显著差异(85.71%、75.00%、75.00%)。mNGS 对鲍曼不动杆菌的碳青霉烯类耐药的敏感性也高达 94.74%。

结论:mNGS 在不同病原体和抗生素之间的预测性能存在差异,表明其作为传统 PST 辅助工具的潜力。然而,mNGS 目前不能替代传统的 PST。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/e2315c7422cf/12941_2024_690_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/f6bd516583b8/12941_2024_690_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/130efc84ecbd/12941_2024_690_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/e2315c7422cf/12941_2024_690_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/f6bd516583b8/12941_2024_690_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/130efc84ecbd/12941_2024_690_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c79/11020437/e2315c7422cf/12941_2024_690_Fig3_HTML.jpg

相似文献

[1]
Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients.

Ann Clin Microbiol Antimicrob. 2024-4-15

[2]
Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections.

Genome Med. 2022-7-12

[3]
[Diagnostic value of detection of pathogens in bronchoalveolar lavage fluid by metagenomics next-generation sequencing in organ transplant patients with pulmonary infection].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021-12

[4]
Improving pulmonary infection diagnosis with metagenomic next-generation sequencing of bronchoalveolar lavage fluid.

J Med Microbiol. 2024-2

[5]
The clinical significance of simultaneous detection of pathogens from bronchoalveolar lavage fluid and blood samples by metagenomic next-generation sequencing in patients with severe pneumonia.

J Med Microbiol. 2021-1

[6]
Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance.

Microbiol Spectr. 2022-2-23

[7]
Application of Metagenomic Next-Generation Sequencing (mNGS) Using Bronchoalveolar Lavage Fluid (BALF) in Diagnosing Pneumonia of Children.

Microbiol Spectr. 2022-10-26

[8]
The diagnostic value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in critically ill patients with respiratory tract infections.

Microbiol Spectr. 2024-8-6

[9]
Metagenomic next-generation sequencing of bronchoalveolar lavage fluid in non-severe and severe pneumonia patients.

J Microbiol Methods. 2023-12

[10]
Diagnostic value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in pediatric pneumonia.

Front Cell Infect Microbiol. 2022

引用本文的文献

[1]
Pathogen detection and antibiotic use in granulomatous lobular mastitis: a comparison of mNGS and culture.

Front Cell Infect Microbiol. 2025-6-3

[2]
Integrating sequencing methods with machine learning for antimicrobial susceptibility testing in pediatric infections: current advances and future insights.

Front Microbiol. 2025-3-5

[3]
Targeted next-generation sequencing for antimicrobial resistance detection in ventilator-associated pneumonia.

Front Cell Infect Microbiol. 2025-1-31

[4]
Clinical and metagenomic predicted antimicrobial resistance in pediatric critically ill patients with infectious diseases in a single center of Zhejiang.

Ann Clin Microbiol Antimicrob. 2024-12-20

[5]
Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology.

Cells. 2024-12-4

[6]
Effect of metagenomic next-generation sequencing on clinical outcomes in adults with severe pneumonia post-cardiac surgery: a single-center retrospective study.

Sci Rep. 2024-11-21

[7]
Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility.

J Clin Med. 2024-5-11

本文引用的文献

[1]
Direct prediction of carbapenem resistance in by whole genome sequencing and metagenomic sequencing.

J Clin Microbiol. 2023-11-21

[2]
Diagnostic Performance and Clinical Impact of Metagenomic Next-Generation Sequencing for Pediatric Infectious Diseases.

J Clin Microbiol. 2023-6-20

[3]
Novel Clinical mNGS-Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of Acinetobacter baumannii.

J Clin Microbiol. 2023-5-23

[4]
A rapid bacterial pathogen and antimicrobial resistance diagnosis workflow using Oxford nanopore adaptive sequencing method.

Brief Bioinform. 2022-11-19

[5]
Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections.

Genome Med. 2022-7-12

[6]
Inferring antibiotic susceptibility from metagenomic data: dream or reality?

Clin Microbiol Infect. 2022-9

[7]
Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance.

Microbiol Spectr. 2022-2-23

[8]
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.

Lancet. 2022-2-12

[9]
Combined nanopore adaptive sequencing and enzyme-based host depletion efficiently enriched microbial sequences and identified missing respiratory pathogens.

BMC Genomics. 2021-10-9

[10]
Readfish enables targeted nanopore sequencing of gigabase-sized genomes.

Nat Biotechnol. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索