Suppr超能文献

利用深度学习技术提高基于 P300 的脑机接口。

Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces.

出版信息

IEEE J Biomed Health Inform. 2022 Oct;26(10):4892-4902. doi: 10.1109/JBHI.2022.3174771. Epub 2022 Oct 4.

Abstract

Brain-Computer Interface (BCI) has become an established technology to interconnect a human brain and an external device. One of the most popular protocols for BCI is based on the extraction of the so-called P300 wave from electroencephalography (EEG) recordings. P300 wave is an event-related potential with a latency of 300 ms after the onset of a rare stimulus. In this paper, we used deep learning architectures, namely convolutional neural networks (CNNs), to improve P300-based BCIs. We propose a novel BCI classifier, called P3CNET, that improved P300 classification accuracy performances of the best state-of-the-art classifier. In addition, we explored pre-processing and training choices that improved the usability of BCI systems. For the pre-processing of EEG data, we explored the optimal signal interval that would improve classification accuracies. Then, we explored the minimum number of calibration sessions to balance higher accuracy and shorter calibration time. To improve the explainability of deep learning architectures, we analyzed the saliency maps of the input EEG signal leading to a correct P300 classification, and we observed that the elimination of less informative electrode channels from the data did not result in better accuracy. All the methodologies and explorations were performed and validated on two different CNN classifiers, demonstrating the generalizability of the obtained results. Finally, we showed the advantages given by transfer learning when using the proposed novel architecture on other P300 datasets. The presented architectures and practical suggestions can be used by BCI practitioners to improve its effectiveness.

摘要

脑机接口(BCI)已成为一种将人脑与外部设备连接起来的成熟技术。BCI 中最流行的协议之一是基于从脑电图(EEG)记录中提取所谓的 P300 波。P300 波是一种事件相关电位,在罕见刺激开始后 300 毫秒出现潜伏期。在本文中,我们使用深度学习架构,即卷积神经网络(CNN),来改进基于 P300 的 BCI。我们提出了一种新的 BCI 分类器,称为 P3CNET,它提高了最佳现有分类器的 P300 分类准确性。此外,我们还探索了预处理和训练选择,以提高 BCI 系统的可用性。对于 EEG 数据的预处理,我们探索了可以提高分类准确性的最佳信号间隔。然后,我们探索了最小校准会话数量,以平衡更高的准确性和更短的校准时间。为了提高深度学习架构的可解释性,我们分析了导致正确 P300 分类的输入 EEG 信号的显着性图,并且观察到从数据中消除信息量较少的电极通道并不会导致更高的准确性。所有方法和探索都在两个不同的 CNN 分类器上进行和验证,证明了获得的结果的可泛化性。最后,我们展示了在其他 P300 数据集上使用所提出的新架构进行迁移学习时的优势。提出的架构和实用建议可由 BCI 从业者用于提高其有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验