Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Division of Material Science, Nagoya University Graduate School of Science, Nagoya, Japan.
Commun Biol. 2022 May 12;5(1):453. doi: 10.1038/s42003-022-03389-7.
Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1-8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson's disease.
人类经常会暴露在时变和静态的弱磁场(WMF)中。然而,报道中很少涉及到比地磁场还弱的微弱磁场的影响。在这里,我们发现极低频(ELF)WMF,由强度为 10μT 的连续脉冲组成,频率为 1-8Hz,比地磁场弱三到四倍,会使线粒体质量减少 70%,并使线粒体电子传递链(ETC)复合物 II 的活性降低到 88%。化学抑制电子通过线粒体 ETC 复合物 II 的流动会使 ELF-WMF 的作用失效。ETC 复合物 II 的抑制随后通过将 parkin 和 PINK1 转移到线粒体并募集 LC3-II 来诱导线粒体自噬。此后,线粒体自噬会诱导 PGC-1α 介导的线粒体生物发生,从而使线粒体恢复活力。缺乏 PINK1 会使 ELF-WMF 的作用失效。因此,ELF-WMF 可能适用于治疗表现出受损线粒体动态平衡的人类疾病,例如帕金森病。
Neurotox Res. 2022-8
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025-8-25
Front Cell Neurosci. 2023-3-17
Int J Mol Sci. 2022-11-19
Bioelectromagnetics. 2021-4
Neuropsychiatr Dis Treat. 2020-12-7
Electromagn Biol Med. 2019
Sci Adv. 2019-1-30