Suppr超能文献

基于危重症患者尿量变化的深度学习模型预测严重急性肾损伤的外部验证。

External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients.

机构信息

Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy.

CNR-IFC, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Nefrologia-Ospedali Riuniti, 89100, Reggio Calabria, Italy.

出版信息

J Nephrol. 2022 Nov;35(8):2047-2056. doi: 10.1007/s40620-022-01335-8. Epub 2022 May 12.

Abstract

OBJECTIVES

The purpose of this study was to externally validate algorithms (previously developed and trained in two United States populations) aimed at early detection of severe oliguric AKI (stage 2/3 KDIGO) in intensive care units patients.

METHODS

The independent cohort was composed of 10'596 patients from the university hospital ICU of Amsterdam (the "AmsterdamUMC database") admitted to their intensive care units. In this cohort, we analysed the accuracy of algorithms based on logistic regression and deep learning methods. The accuracy of investigated algorithms had previously been tested with electronic intensive care unit (eICU) and MIMIC-III patients.

RESULTS

The deep learning model had an area under the ROC curve (AUC) of 0,907 (± 0,007SE) with a sensitivity and specificity of 80% and 89%, respectively, for identifying oliguric AKI episodes. Logistic regression models had an AUC of 0,877 (± 0,005SE) with a sensitivity and specificity of 80% and 81%, respectively. These results were comparable to those obtained in the two US populations upon which the algorithms were previously developed and trained.

CONCLUSION

External validation on the European sample confirmed the accuracy of the algorithms, previously investigated in the US population. The models show high accuracy in both the European and the American databases even though the two cohorts differ in a range of demographic and clinical characteristics, further underlining the validity and the generalizability of the two analytical approaches.

摘要

目的

本研究旨在对旨在早期检测重症少尿型急性肾损伤(KDIGO 分期 2/3 期)的算法(先前在美国两个人群中开发和训练)进行外部验证。

方法

独立队列由阿姆斯特丹大学医院 ICU 的 10596 名患者组成(“阿姆斯特丹 UMC 数据库”),这些患者入住其重症监护病房。在该队列中,我们分析了基于逻辑回归和深度学习方法的算法的准确性。先前已经使用电子重症监护病房(eICU)和 MIMIC-III 患者对所研究的算法的准确性进行了测试。

结果

深度学习模型的 ROC 曲线下面积(AUC)为 0.907(±0.007SE),敏感性和特异性分别为 80%和 89%,用于识别少尿型 AKI 发作。逻辑回归模型的 AUC 为 0.877(±0.005SE),敏感性和特异性分别为 80%和 81%。这些结果与先前在开发和训练算法的美国人群中获得的结果相当。

结论

在欧洲样本上进行的外部验证证实了先前在美国人群中研究的算法的准确性。即使两个队列在一系列人口统计学和临床特征上存在差异,这些模型在欧洲和美国数据库中均显示出较高的准确性,进一步强调了这两种分析方法的有效性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c65f/9585008/ca4f5e67c5f8/40620_2022_1335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验