Suppr超能文献

用于农业应用的拉曼光谱与机器学习:作为迈向数字农业关键步骤的植物光谱特征的化学计量学评估

Raman Spectroscopy and Machine Learning for Agricultural Applications: Chemometric Assessment of Spectroscopic Signatures of Plants as the Essential Step Toward Digital Farming.

作者信息

Farber Charles, Kurouski Dmitry

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States.

Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States.

出版信息

Front Plant Sci. 2022 Apr 26;13:887511. doi: 10.3389/fpls.2022.887511. eCollection 2022.

Abstract

A growing body of evidence suggests that Raman spectroscopy (RS) can be used for diagnostics of plant biotic and abiotic stresses. RS can be also utilized for identification of plant species and their varieties, as well as assessment of the nutritional content and commercial values of seeds. The power of RS in such cases to a large extent depends on chemometric analyses of spectra. In this work, we critically discuss three major approaches that can be used for advanced analyses of spectroscopic data: summary statistics, statistical testing and chemometric classification. On the example of Raman spectra collected from roses, we demonstrate the outcomes and the potential of all three types of spectral analyses. We anticipate that our findings will help to design the most optimal spectral processing and preprocessing that is required to achieved the desired results. We also expect that reported collection of results will be useful to all researchers who work on spectroscopic analyses of plant specimens.

摘要

越来越多的证据表明,拉曼光谱(RS)可用于诊断植物的生物和非生物胁迫。RS还可用于识别植物物种及其品种,以及评估种子的营养成分和商业价值。在这些情况下,RS的能力在很大程度上取决于光谱的化学计量分析。在这项工作中,我们批判性地讨论了三种可用于光谱数据高级分析的主要方法:汇总统计、统计检验和化学计量分类。以从玫瑰收集的拉曼光谱为例,我们展示了所有三种光谱分析类型的结果和潜力。我们预计,我们的发现将有助于设计实现预期结果所需的最优光谱处理和预处理。我们还期望所报告的结果集对所有从事植物标本光谱分析的研究人员有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957e/9087799/3571cea52bbf/fpls-13-887511-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验