Suppr超能文献

使用Isalos分析平台预测金属氧化物纳米颗粒的细胞毒性

Predicting Cytotoxicity of Metal Oxide Nanoparticles using Isalos Analytics Platform.

作者信息

Papadiamantis Anastasios G, Jänes Jaak, Voyiatzis Evangelos, Sikk Lauri, Burk Jaanus, Burk Peeter, Tsoumanis Andreas, Ha My Kieu, Yoon Tae Hyun, Valsami-Jones Eugenia, Lynch Iseult, Melagraki Georgia, Tämm Kaido, Afantitis Antreas

机构信息

NovaMechanics Ltd., Nicosia 1065, Cyprus.

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.

出版信息

Nanomaterials (Basel). 2020 Oct 13;10(10):2017. doi: 10.3390/nano10102017.

Abstract

A literature curated dataset containing 24 distinct metal oxide (MeO) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of MeO NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by MeO NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the MeO conduction band (), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⟂ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project's Integrated Approach to Testing and Assessment (IATA).

摘要

一个精心整理的文献数据集包含24种不同的金属氧化物(MeO)纳米颗粒(NP),其中包括15个物理化学、结构和检测相关的描述符,又补充了62个原子尺度的计算描述符,并用于构建一个强大且经过验证的计算机模拟模型,以预测NP的细胞毒性。该模型可基于比色法乳酸脱氢酶(LDH)检测和发光法三磷酸腺苷(ATP)检测来预测MeO NPs的细胞毒性,这两种检测方法均可量化不可逆的细胞膜损伤。在总共使用的77个描述符中,有7个被确定为对MeO NPs诱导细胞毒性具有重要意义。它们是NP核心尺寸、流体动力学尺寸、检测类型、暴露剂量、MeO导带的能量()、NP表面金属原子的配位数(平均C.N. Me原子表面)以及所有金属原子的平均力矢量表面法向分量(v⟂ Me原子表面)。讨论了这些描述符的重要性和作用,以证明它们与细胞毒性的直接相关性。所构建的模型已由“地平线2020”(H2020)NanoSolveIT项目公开发布,并将被添加到该项目的综合测试与评估方法(IATA)中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b6/7601995/dd38d38959cc/nanomaterials-10-02017-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验