Suppr超能文献

结果:用于长尾识别的残差学习。

ResLT: Residual Learning for Long-Tailed Recognition.

作者信息

Cui Jiequan, Liu Shu, Tian Zhuotao, Zhong Zhisheng, Jia Jiaya

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3695-3706. doi: 10.1109/TPAMI.2022.3174892. Epub 2023 Feb 3.

Abstract

Deep learning algorithms face great challenges with long-tailed data distribution which, however, is quite a common case in real-world scenarios. Previous methods tackle the problem from either the aspect of input space (re-sampling classes with different frequencies) or loss space (re-weighting classes with different weights), suffering from heavy over-fitting to tail classes or hard optimization during training. To alleviate these issues, we propose a more fundamental perspective for long-tailed recognition, i.e., from the aspect of parameter space, and aims to preserve specific capacity for classes with low frequencies. From this perspective, the trivial solution utilizes different branches for the head, medium, tail classes respectively, and then sums their outputs as the final results is not feasible. Instead, we design the effective residual fusion mechanism - with one main branch optimized to recognize images from all classes, another two residual branches are gradually fused and optimized to enhance images from medium+tail classes and tail classes respectively. Then the branches are aggregated into final results by additive shortcuts. We test our method on several benchmarks, i.e., long-tailed version of CIFAR-10, CIFAR-100, Places, ImageNet, and iNaturalist 2018. Experimental results manifest the effectiveness of our method. Our code is available at https://github.com/jiequancui/ResLT.

摘要

深度学习算法在面对长尾数据分布时面临巨大挑战,然而,这在现实世界场景中是相当常见的情况。先前的方法从输入空间(以不同频率重新采样类别)或损失空间(以不同权重重新加权类别)的角度来解决这个问题,存在对尾部类别严重过拟合或训练期间优化困难的问题。为了缓解这些问题,我们提出了一种关于长尾识别的更基本的视角,即从参数空间的角度,并旨在为低频类别保留特定能力。从这个角度来看,分别为头部、中部、尾部类别使用不同分支,然后将它们的输出相加作为最终结果的简单解决方案是不可行的。相反,我们设计了有效的残差融合机制——一个主分支被优化以识别所有类别的图像,另外两个残差分支逐渐融合并优化,分别增强来自中部+尾部类别和尾部类别的图像。然后通过加法捷径将这些分支聚合为最终结果。我们在几个基准测试上测试了我们的方法,即CIFAR-10、CIFAR-100、Places、ImageNet的长尾版本以及iNaturalist 2018。实验结果证明了我们方法的有效性。我们的代码可在https://github.com/jiequancui/ResLT获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验