Suppr超能文献

用于类别不平衡学习的双补偿残差网络

Dual Compensation Residual Networks for Class Imbalanced Learning.

作者信息

Hou Ruibing, Chang Hong, Ma Bingpeng, Shan Shiguang, Chen Xilin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11733-11752. doi: 10.1109/TPAMI.2023.3275585. Epub 2023 Sep 5.

Abstract

Learning generalizable representation and classifier for class-imbalanced data is challenging for data-driven deep models. Most studies attempt to re-balance the data distribution, which is prone to overfitting on tail classes and underfitting on head classes. In this work, we propose Dual Compensation Residual Networks to better fit both tail and head classes. First, we propose dual Feature Compensation Module (FCM) and Logit Compensation Module (LCM) to alleviate the overfitting issue. The design of these two modules is based on the observation: an important factor causing overfitting is that there is severe feature drift between training and test data on tail classes. In details, the test features of a tail category tend to drift towards feature cloud of multiple similar head categories. So FCM estimates a multi-mode feature drift direction for each tail category and compensate for it. Furthermore, LCM translates the deterministic feature drift vector estimated by FCM along intra-class variations, so as to cover a larger effective compensation space, thereby better fitting the test features. Second, we propose a Residual Balanced Multi-Proxies Classifier (RBMC) to alleviate the under-fitting issue. Motivated by the observation that re-balancing strategy hinders the classifier from learning sufficient head knowledge and eventually causes underfitting, RBMC utilizes uniform learning with a residual path to facilitate classifier learning. Comprehensive experiments on Long-tailed and Class-Incremental benchmarks validate the efficacy of our method.

摘要

对于数据驱动的深度模型而言,为类别不平衡数据学习可泛化的表示和分类器具有挑战性。大多数研究试图重新平衡数据分布,这容易导致在尾部类别上出现过拟合,而在头部类别上出现欠拟合。在这项工作中,我们提出了双补偿残差网络,以更好地拟合尾部和头部类别。首先,我们提出了双特征补偿模块(FCM)和对数几率补偿模块(LCM)来缓解过拟合问题。这两个模块的设计基于以下观察结果:导致过拟合的一个重要因素是尾部类别在训练数据和测试数据之间存在严重的特征漂移。具体而言,一个尾部类别的测试特征往往会朝着多个相似头部类别的特征云漂移。因此,FCM为每个尾部类别估计一个多模态特征漂移方向并对其进行补偿。此外,LCM将FCM估计的确定性特征漂移向量沿类内变化进行平移,以覆盖更大的有效补偿空间,从而更好地拟合测试特征。其次,我们提出了一种残差平衡多代理分类器(RBMC)来缓解欠拟合问题。基于重新平衡策略会阻碍分类器学习足够的头部知识并最终导致欠拟合这一观察结果,RBMC利用带有残差路径的均匀学习来促进分类器学习。在长尾和类别增量基准上的综合实验验证了我们方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验