Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France.
Université de Paris, CNRS, Centre Borelli, Paris, France.
PLoS One. 2022 May 13;17(5):e0268475. doi: 10.1371/journal.pone.0268475. eCollection 2022.
In the past few years, light, affordable wearable inertial measurement units have been providing to clinicians and researchers the possibility to quantitatively study motor degeneracy by comparing gait trials from patients and/or healthy subjects. To do so, standard gait features can be used but they fail to detect subtle changes in several pathologies including multiple sclerosis. Multiple sclerosis is a demyelinating disease of the central nervous system whose symptoms include lower limb impairment, which is why gait trials are commonly used by clinicians for their patients' follow-up. This article describes a method to compare pairs of gait signals, visualize the results and interpret them, based on topological data analysis techniques. Our method is non-parametric and requires no data other than gait signals acquired with inertial measurement units. We introduce tools from topological data analysis (sublevel sets, persistence barcodes) in a practical way to make it as accessible as possible in order to encourage its use by clinicians. We apply our method to study a cohort of patients suffering from progressive multiple sclerosis and healthy subjects. We show that it can help estimate the severity of the disease and also be used for longitudinal follow-up to detect an evolution of the disease or other phenomena such as asymmetry or outliers.
在过去的几年中,轻巧、经济实惠的可穿戴惯性测量单元为临床医生和研究人员提供了一种可能性,即通过比较患者和/或健康受试者的步态试验来定量研究运动代偿。为此,可以使用标准的步态特征,但它们无法检测出包括多发性硬化症在内的几种病理变化中的细微变化。多发性硬化症是一种中枢神经系统脱髓鞘疾病,其症状包括下肢功能障碍,这就是为什么步态试验通常被临床医生用于患者的随访。本文介绍了一种基于拓扑数据分析技术比较成对步态信号、可视化结果并进行解释的方法。我们的方法是非参数的,只需要惯性测量单元采集的步态信号,不需要其他数据。我们以一种实用的方式引入拓扑数据分析(子级集、持久条码)的工具,使其尽可能易于使用,以鼓励临床医生使用。我们将该方法应用于研究一组患有进展性多发性硬化症的患者和健康受试者。结果表明,该方法可以帮助评估疾病的严重程度,也可以用于纵向随访,以检测疾病的演变或其他现象,如不对称或异常值。