Suppr超能文献

神经疾病中线粒体膜接触位点的失调。

Dysregulation of organelle membrane contact sites in neurological diseases.

机构信息

Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.

Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.

出版信息

Neuron. 2022 Aug 3;110(15):2386-2408. doi: 10.1016/j.neuron.2022.04.020. Epub 2022 May 12.

Abstract

The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.

摘要

真核细胞的一个定义性进化特征是出现膜结合细胞器。区室化使每个细胞器能够维持在空间上、物理上和化学上不同的环境,这极大地增强了单个细胞器的功能。然而,每个细胞器的活动必须保持平衡,并相互依赖以维持细胞内环境稳定。因此,细胞器之间的适当调节相互作用,无论是物理上还是功能上,对于整体细胞健康和行为仍然至关重要。特别是,神经元内环境稳定严重依赖于细胞器功能和串扰的适当调节,这些功能的缺陷经常与疾病有关。在这篇综述中,我们研究了细胞器接触在神经疾病中的新作用,并讨论了接触的破坏如何导致疾病的发病机制。了解细胞器接触形成和调节的分子机制将拓宽我们对其在健康和疾病中的作用的认识,为针对细胞器间串扰和功能的新疗法的发展奠定基础。

相似文献

1
Dysregulation of organelle membrane contact sites in neurological diseases.
Neuron. 2022 Aug 3;110(15):2386-2408. doi: 10.1016/j.neuron.2022.04.020. Epub 2022 May 12.
2
ER-organelle contacts: A signaling hub for neurological diseases.
Pharmacol Res. 2024 May;203:107149. doi: 10.1016/j.phrs.2024.107149. Epub 2024 Mar 20.
3
Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis.
Mol Metab. 2022 Jun;60:101481. doi: 10.1016/j.molmet.2022.101481. Epub 2022 Mar 25.
5
Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease.
Front Cell Dev Biol. 2021 Feb 25;9:613336. doi: 10.3389/fcell.2021.613336. eCollection 2021.
6
Better to keep in touch: investigating inter-organelle cross-talk.
FEBS J. 2021 Feb;288(3):740-755. doi: 10.1111/febs.15451. Epub 2020 Jun 30.
7
Organelle Communication: Joined in Sickness and in Health.
Physiology (Bethesda). 2023 May 1;38(3):0. doi: 10.1152/physiol.00024.2022.
8
Making connections: interorganelle contacts orchestrate mitochondrial behavior.
Trends Cell Biol. 2014 Sep;24(9):537-45. doi: 10.1016/j.tcb.2014.04.004. Epub 2014 Apr 28.
9
Interplay between endoplasmic reticulum membrane contacts and actomyosin cytoskeleton.
Cytoskeleton (Hoboken). 2020 Jul;77(7):241-248. doi: 10.1002/cm.21623. Epub 2020 Jul 13.
10
The relevance of organelle interactions in cellular senescence.
Theranostics. 2022 Feb 28;12(5):2445-2464. doi: 10.7150/thno.70588. eCollection 2022.

引用本文的文献

1
The complex web of membrane contact sites in brain aging and neurodegeneration.
Cell Mol Life Sci. 2025 Aug 8;82(1):301. doi: 10.1007/s00018-025-05830-6.
3
Key challenges and recommendations for defining organelle membrane contact sites.
Nat Rev Mol Cell Biol. 2025 Jun 23. doi: 10.1038/s41580-025-00864-x.
4
Pex30-dependent membrane contact sites maintain ER lipid homeostasis.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202409039. Epub 2025 May 23.
5
PDZD8 promotes autophagy at ER-lysosome membrane contact sites to regulate activity-dependent synaptic growth.
Cell Rep. 2025 Apr 22;44(4):115483. doi: 10.1016/j.celrep.2025.115483. Epub 2025 Mar 28.
6
Organelle symphony: Nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B in stroke pathobiology.
Neural Regen Res. 2026 Apr 1;21(4):1483-1496. doi: 10.4103/NRR.NRR-D-24-01404. Epub 2025 Mar 25.
7
Hoi1 targets the yeast BLTP2 protein to ER-PM contact sites to regulate lipid homeostasis.
bioRxiv. 2025 Feb 19:2025.02.11.637747. doi: 10.1101/2025.02.11.637747.
9
Imaging and proteomics toolkits for studying organelle contact sites.
Front Cell Dev Biol. 2024 Sep 24;12:1466915. doi: 10.3389/fcell.2024.1466915. eCollection 2024.
10
Gaucher disease provides a unique window into Parkinson disease pathogenesis.
Nat Rev Neurol. 2024 Sep;20(9):526-540. doi: 10.1038/s41582-024-00999-z. Epub 2024 Aug 6.

本文引用的文献

1
Quick and Mild Isolation of Intact Lysosomes Using Magnetic-Plasmonic Hybrid Nanoparticles.
ACS Nano. 2022 Jan 25;16(1):885-896. doi: 10.1021/acsnano.1c08474. Epub 2022 Jan 3.
2
Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration.
Cell Rep. 2021 Dec 21;37(12):110133. doi: 10.1016/j.celrep.2021.110133.
3
Mitochondria Endoplasmic Reticulum Contact Sites (MERCs): Proximity Ligation Assay as a Tool to Study Organelle Interaction.
Front Cell Dev Biol. 2021 Dec 3;9:789959. doi: 10.3389/fcell.2021.789959. eCollection 2021.
4
ER - lysosome contacts at a pre-axonal region regulate axonal lysosome availability.
Nat Commun. 2021 Jul 23;12(1):4493. doi: 10.1038/s41467-021-24713-5.
5
VPS13D interacts with VCP/p97 and negatively regulates endoplasmic reticulum-mitochondria interactions.
Mol Biol Cell. 2021 Aug 1;32(16):1474-1486. doi: 10.1091/mbc.E21-03-0097. Epub 2021 Jun 16.
6
VPS13D bridges the ER to mitochondria and peroxisomes via Miro.
J Cell Biol. 2021 May 3;220(5). doi: 10.1083/jcb.202010004.
7
The Vps13 Family of Lipid Transporters and Its Role at Membrane Contact Sites.
Int J Mol Sci. 2021 Mar 12;22(6):2905. doi: 10.3390/ijms22062905.
9
Lysosome Function and Dysfunction in Hereditary Spastic Paraplegias.
Brain Sci. 2021 Jan 24;11(2):152. doi: 10.3390/brainsci11020152.
10
Mitochondria-lysosome membrane contacts are defective in GDAP1-related Charcot-Marie-Tooth disease.
Hum Mol Genet. 2021 Jan 21;29(22):3589-3605. doi: 10.1093/hmg/ddaa243.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验