Suppr超能文献

Radiation damage in the high resolution electron microscopy of biological materials: a review.

作者信息

Cosslett V E

出版信息

J Microsc. 1978 Jul;113(2):113-29. doi: 10.1111/j.1365-2818.1978.tb02454.x.

Abstract

Radiation damage to a biological specimen arises from a variety of interactions between the illuminating electrons and the atoms in it. The relative probabilities of these events, and the amout of energy transferred, can be calculated from basic physical theory. The microscopic damage caused in a particular specimen in given operating conditions is more difficult to predict, but it can be measured by a number of macroscopic indicators, the chief of which are loss of mass and changes in the energy loss spectrum (or electron diffraction, pattern, if any). For most biological material the observed rate of damage is such as to set a limit to the intensity of illumination, the maximum magnification and the minimum size of detail that can be made visible. Several techniques have been devised and tested for reducing the radiation sensitivity of a specimen, of which cooling to a very low temperature and encasing it in an inert medium are the most effective. If the various protective measures act cooperatively, they could increase the effective resolution of sensitive material by an order of magnitude, making possible electron microscopy of the atomic structure of, for instance, the nucleic acid bases and other macromolecules. The prospects for observing living cells at a resolution better than that of the best optical microscopes would remain very small.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验