Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece.
Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA.
Int J Environ Res Public Health. 2022 Apr 28;19(9):5401. doi: 10.3390/ijerph19095401.
Land use regression (LUR) and dispersion/chemical transport models (D/CTMs) are frequently applied to predict exposure to air pollution concentrations at a fine scale for use in epidemiological studies. Moreover, the use of satellite aerosol optical depth data has been a key predictor especially for particulate matter pollution and when studying large populations. Within the STEAM project we present a hybrid spatio-temporal modeling framework by (a) incorporating predictions from dispersion modeling of nitrogen dioxide (NO), ozone (O) and particulate matter with an aerodynamic diameter equal or less than 10 μm (PM10) and less than 2.5 μm (PM2.5) into a spatio-temporal LUR model; and (b) combining the predictions LUR and dispersion modeling and additionally, only for PM2.5, from an ensemble machine learning approach using a generalized additive model (GAM). We used air pollution measurements from 2009 to 2013 from 62 fixed monitoring sites for O3, 115 for particles and up to 130 for NO, obtained from the dense network in the Greater London Area, UK. We assessed all models following a 10-fold cross validation (10-fold CV) procedure. The hybrid models performed better compared to separate LUR models. Incorporation of the dispersion estimates in the LUR models as a predictor, improved the LUR model fit: CV-R increased to 0.76 from 0.71 for NO, to 0.79 from 0.57 for PM10, to 0.81 to 0.66 for PM2.5 and to 0.75 from 0.62 for O. The CV-R obtained from the hybrid GAM framework was also increased compared to separate LUR models (CV-R = 0.80 for NO, 0.76 for PM10, 0.79 for PM2.5 and 0.75 for O). Our study supports the combined use of different air pollution exposure assessment methods in a single modeling framework to improve the accuracy of spatio-temporal predictions for subsequent use in epidemiological studies.
土地利用回归 (LUR) 和分散/化学输送模型 (D/CTMs) 常用于以细尺度预测空气污染浓度,以便在流行病学研究中使用。此外,卫星气溶胶光学深度数据的使用一直是一个关键的预测因子,特别是对于颗粒物污染,以及在研究大人群时。在 STEAM 项目中,我们提出了一种混合时空建模框架,方法是:(a) 将二氧化氮 (NO)、臭氧 (O) 和粒径等于或小于 10 μm (PM10) 和小于 2.5 μm (PM2.5) 的颗粒物的分散模型预测纳入时空 LUR 模型;(b) 将 LUR 和分散模型的预测结合起来,并且仅对于 PM2.5,使用广义加性模型 (GAM) 的集合机器学习方法进行预测。我们使用了来自英国大伦敦地区密集网络的 2009 年至 2013 年期间 62 个固定监测站点的 O3 空气污染测量值、115 个颗粒物测量值和多达 130 个 NO 测量值。我们使用 10 折交叉验证 (10 折 CV) 程序评估了所有模型。与单独的 LUR 模型相比,混合模型的性能更好。将分散估计值作为预测因子纳入 LUR 模型,提高了 LUR 模型的拟合度:CV-R 从 NO 的 0.71 增加到 0.76,从 PM10 的 0.57 增加到 0.79,从 PM2.5 的 0.66 增加到 0.81,从 O 的 0.62 增加到 0.75。与单独的 LUR 模型相比,混合 GAM 框架获得的 CV-R 也有所增加(NO 的 CV-R = 0.80,PM10 的 CV-R = 0.76,PM2.5 的 CV-R = 0.79,O 的 CV-R = 0.75)。我们的研究支持在单个建模框架中结合使用不同的空气污染暴露评估方法,以提高时空预测的准确性,以便随后在流行病学研究中使用。