Suppr超能文献

一种用于识别侵袭性癌症分子特征的数据科学方法。

A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers.

作者信息

Barbosa-Silva Adriano, Magalhães Milena, Da Silva Gilberto Ferreira, Da Silva Fabricio Alves Barbosa, Carneiro Flávia Raquel Gonçalves, Carels Nicolas

机构信息

Center for Medical Statistics, Informatics and Intelligent Systems, Institute for Artificial Intelligence, Medical University of Vienna, 1090 Vienna, Austria.

Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London E14NS, UK.

出版信息

Cancers (Basel). 2022 May 7;14(9):2325. doi: 10.3390/cancers14092325.

Abstract

The main hallmarks of cancer include sustaining proliferative signaling and resisting cell death. We analyzed the genes of the WNT pathway and seven cross-linked pathways that may explain the differences in aggressiveness among cancer types. We divided six cancer types (liver, lung, stomach, kidney, prostate, and thyroid) into classes of high (H) and low (L) aggressiveness considering the TCGA data, and their correlations between Shannon entropy and 5-year overall survival (OS). Then, we used principal component analysis (PCA), a random forest classifier (RFC), and protein-protein interactions (PPI) to find the genes that correlated with aggressiveness. Using PCA, we found , , , , , , , , and . Except for , the RFC analysis showed a different list, which was , , , , , , , , , and . Both methods use different algorithmic approaches and have different purposes, which explains the discrepancy between the two gene lists. The key genes of aggressiveness found by PCA were those that maximized the separation of H and L classes according to its third component, which represented 19% of the total variance. By contrast, RFC classified whether the RNA-seq of a tumor sample was of the H or L type. Interestingly, PPIs showed that the genes of PCA and RFC lists were connected neighbors in the PPI signaling network of WNT and cross-linked pathways.

摘要

癌症的主要特征包括维持增殖信号和抵抗细胞死亡。我们分析了WNT通路以及可能解释不同癌症类型侵袭性差异的七条交联通路的基因。考虑到TCGA数据及其香农熵与5年总生存率(OS)之间的相关性,我们将六种癌症类型(肝癌、肺癌、胃癌、肾癌、前列腺癌和甲状腺癌)分为高侵袭性(H)和低侵袭性(L)类别。然后,我们使用主成分分析(PCA)、随机森林分类器(RFC)和蛋白质-蛋白质相互作用(PPI)来寻找与侵袭性相关的基因。使用PCA,我们发现了……(此处原文未完整给出具体基因名称,无法准确翻译)。除了……(此处原文未完整给出具体基因名称,无法准确翻译)之外,RFC分析显示了一份不同的基因列表,即……(此处原文未完整给出具体基因名称,无法准确翻译)。两种方法使用不同的算法途径且目的不同,这解释了两个基因列表之间的差异。通过PCA发现的侵袭性关键基因是那些根据其第三成分最大限度地分离H类和L类的基因,该成分占总方差的19%。相比之下,RFC对肿瘤样本的RNA测序是H型还是L型进行分类。有趣的是,PPI显示PCA和RFC列表中的基因在WNT和交联通路的PPI信号网络中是相连的邻居。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1c/9103663/f8d705a0efdc/cancers-14-02325-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验