Suppr超能文献

西非炭疽病的季节性和生态适宜性建模

Seasonality and Ecological Suitability Modelling for Anthrax () in Western Africa.

作者信息

Pittiglio Claudia, Shadomy Sean, El Idrissi Ahmed, Soumare Baba, Lubroth Juan, Makonnen Yilma

机构信息

Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Viale delle Terme di Caracalla, 00153 Rome, Italy.

Food and Agriculture Organization of the United Nations, Joint FAO/WHO Centre (CODEX Food Standards and Zoonotic Diseases), Viale delle Terme di Caracalla, 00153 Rome, Italy.

出版信息

Animals (Basel). 2022 Apr 29;12(9):1146. doi: 10.3390/ani12091146.

Abstract

Anthrax is hyper-endemic in West Africa affecting wildlife, livestock and humans. Prediction is difficult due to the lack of accurate outbreak data. However, predicting the risk of infection is important for public health, wildlife conservation and livestock economies. In this study, the seasonality of anthrax outbreaks in West Africa was investigated using climate time series and ecological niche modeling to identify environmental factors related to anthrax occurrence, develop geospatial risk maps and identify seasonal patterns. Outbreak data in livestock, wildlife and humans between 2010 and 2018 were compiled from different sources and analyzed against monthly rates of change in precipitation, normalized difference vegetation index (NDVI) and land surface temperature. Maximum Entropy was used to predict and map the environmental suitability of anthrax occurrence. The findings showed that: (i) Anthrax outbreaks significantly (99%) increased with incremental changes in monthly precipitation and vegetation growth and decremental changes in monthly temperature during January-June. This explains the occurrence of the anthrax peak during the early wet season in West Africa. (ii) Livestock density, precipitation seasonality, NDVI and alkaline soils were the main predictors of anthrax suitability. (iii) Our approach optimized the use of limited and heterogeneous datasets and ecological niche modeling, demonstrating the value of integrated disease notification data and outbreak reports to generate risk maps. Our findings can inform public, animal and environmental health and enhance national and regional One Health disease control strategies.

摘要

炭疽病在西非高度流行,影响野生动物、家畜和人类。由于缺乏准确的疫情数据,预测工作困难重重。然而,预测感染风险对于公共卫生、野生动物保护和畜牧业经济而言至关重要。在本研究中,利用气候时间序列和生态位建模对西非炭疽病疫情的季节性进行了调查,以确定与炭疽病发生相关的环境因素,绘制地理空间风险地图,并识别季节性模式。收集了2010年至2018年间来自不同来源的家畜、野生动物和人类疫情数据,并针对降水、归一化植被指数(NDVI)和地表温度的月变化率进行了分析。利用最大熵原理预测并绘制炭疽病发生的环境适宜性地图。研究结果表明:(i)1月至6月期间,随着月降水量和植被生长的增加以及月温度的降低,炭疽病疫情显著(99%)增加。这解释了西非雨季初期炭疽病高峰期的出现。(ii)家畜密度、降水季节性、NDVI和碱性土壤是炭疽病适宜性的主要预测因子。(iii)我们的方法优化了对有限且异质数据集以及生态位建模的使用,证明了整合疾病通报数据和疫情报告以生成风险地图的价值。我们的研究结果可为公共卫生、动物卫生和环境卫生提供参考,并加强国家和地区的“同一健康”疾病控制策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f01/9105891/31ed360b4cdb/animals-12-01146-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验