超声激活压电纳米材料:从发现到未来临床应用的途径。

Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.

Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.

出版信息

ACS Nano. 2021 Jul 27;15(7):11066-11086. doi: 10.1021/acsnano.1c03087. Epub 2021 Jul 12.

Abstract

Electrical stimulation has shown great promise in biomedical applications, such as regenerative medicine, neuromodulation, and cancer treatment. Yet, the use of electrical end effectors such as electrodes requires connectors and batteries, which dramatically hamper the translation of electrical stimulation technologies in several scenarios. Piezoelectric nanomaterials can overcome the limitations of current electrical stimulation procedures as they can be wirelessly activated by external energy sources such as ultrasound. Wireless electrical stimulation mediated by piezoelectric nanoarchitectures constitutes an innovative paradigm enabling the induction of electrical cues within the body in a localized, wireless, and minimally invasive fashion. In this review, we highlight the fundamental mechanisms of acoustically mediated piezoelectric stimulation and its applications in the biomedical area. Yet, the adoption of this technology in a clinical practice is in its infancy, as several open issues, such as piezoelectric properties measurement, control of the ultrasound dose , modeling and measurement of the piezo effects, knowledge on the triggered bioeffects, therapy targeting, biocompatibility studies, and control of the ultrasound dose delivered , must be addressed. This article explores the current open challenges in piezoelectric stimulation and proposes strategies that may guide future research efforts in this field toward the translation of this technology to the clinical scene.

摘要

电刺激在生物医学应用中显示出巨大的前景,例如再生医学、神经调节和癌症治疗。然而,电刺激技术的应用受到电极等电效应器使用的限制,需要使用连接器和电池,这在许多情况下严重阻碍了电刺激技术的转化。压电纳米材料可以克服当前电刺激程序的限制,因为它们可以通过外部能源(如超声波)无线激活。由压电纳米结构介导的无线电刺激构成了一种创新的范例,能够以局部、无线和微创的方式在体内诱导电信号。在这篇综述中,我们强调了声介导的压电刺激的基本机制及其在生物医学领域的应用。然而,由于几个开放性问题,如压电性能测量、超声剂量控制、压电动量建模和测量、触发生物效应的知识、靶向治疗、生物相容性研究和超声剂量控制,该技术在临床实践中的应用还处于起步阶段。本文探讨了压电刺激的当前开放性挑战,并提出了可能指导该领域未来研究工作的策略,以将该技术转化为临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4cd/8397402/42ace3744497/nn1c03087_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索