Suppr超能文献

非靶向脂质组学揭示了来自意大利坎帕尼亚地区不同严重程度 COVID-19 患者的特定脂质特征。

Untargeted lipidomics reveals specific lipid profiles in COVID-19 patients with different severity from Campania region (Italy).

机构信息

Department of Medicine and Surgery, University of Salerno, Baronissi, SA, Italy.

Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy.

出版信息

J Pharm Biomed Anal. 2022 Aug 5;217:114827. doi: 10.1016/j.jpba.2022.114827. Epub 2022 May 10.

Abstract

COVID-19 infection evokes various systemic alterations that push patients not only towards severe acute respiratory syndrome but causes an important metabolic dysregulation with following multi-organ alteration and potentially poor outcome. To discover novel potential biomarkers able to predict disease's severity and patient's outcome, in this study we applied untargeted lipidomics, by a reversed phase ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry platform (RP-UHPLC-TIMS-MS), on blood samples collected at hospital admission in an Italian cohort of COVID-19 patients (45 mild, 54 severe, 21 controls). In a subset of patients, we also collected a second blood sample in correspondence of clinical phenotype modification (longitudinal population). Plasma lipid profiles revealed several lipids significantly modified in COVID-19 patients with respect to controls and able to discern between mild and severe clinical phenotype. Severe patients were characterized by a progressive decrease in the levels of LPCs, LPC-Os, PC-Os, and, on the contrary, an increase in overall TGs, PEs, and Ceramides. A machine learning model was built by using both the entire dataset and with a restricted lipid panel dataset, delivering comparable results in predicting severity (AUC= 0.777, CI: 0.639-0.904) and outcome (AUC= 0.789, CI: 0.658-0.910). Finally, re-building the model with 25 longitudinal (t1) samples, this resulted in 21 patients correctly classified. In conclusion, this study highlights specific lipid profiles that could be used monitor the possible trajectory of COVID-19 patients at hospital admission, which could be used in targeted approaches.

摘要

COVID-19 感染会引起各种全身性改变,不仅会使患者出现严重的急性呼吸综合征,还会导致重要的代谢失调,随后出现多器官改变,并可能导致不良结局。为了发现能够预测疾病严重程度和患者预后的新型潜在生物标志物,在这项研究中,我们应用靶向脂质组学,通过反相超高效液相色谱-陷阱离子淌度质谱平台(RP-UHPLC-TIMS-MS),对意大利 COVID-19 患者入院时采集的血液样本(45 例轻症,54 例重症,21 例对照)进行分析。在部分患者中,我们还在临床表型改变时(纵向人群)采集了第二份血液样本。血浆脂质谱显示,与对照组相比,COVID-19 患者的几种脂质明显改变,能够区分轻症和重症临床表型。重症患者的 LPC、LPC-Os、PC-Os 水平逐渐降低,而总 TG、PE 和 Cer 水平升高。我们通过使用整个数据集和受限脂质面板数据集构建了机器学习模型,在预测严重程度(AUC=0.777,CI:0.639-0.904)和结局(AUC=0.789,CI:0.658-0.910)方面得到了类似的结果。最后,使用 25 份纵向(t1)样本重新构建模型,结果正确分类了 21 例患者。总之,这项研究强调了特定的脂质谱,这些脂质谱可用于监测 COVID-19 患者入院时的可能病程,可用于靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7100/9085356/d4a5a3ebfe88/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验