Suppr超能文献

表面增强拉曼光谱与电化学结合在分析应用中的研究进展

Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications.

机构信息

Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.

Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway.

出版信息

Anal Chim Acta. 2022 May 29;1209:339250. doi: 10.1016/j.aca.2021.339250. Epub 2021 Nov 27.

Abstract

The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.

摘要

电化学表面增强拉曼散射(EC-SERS)实验中表面增强拉曼散射(SERS)的发现被认为是一个历史性的突破。五十年过去了,拉曼光谱电化学(SEC)已经发展成为一种常见的表征工具,提供了关于电极-电解质界面的信息。最近,这项技术已成功用于分析目的。研究发现,EC 高度提高了 SERS 传感器的性能,提供了控制分析物的吸附和提高重现性等优点。在这篇综述中,我们强调了 EC-SERS 传感器作为小型化设备用于即时(PON)分析的潜力,以及它们在质量控制、诊断或环境和食品安全等领域带来变革的能力。在拉曼光谱电化学方面已经取得了重要的进展,它现在代表了对传统分析方法的一种有前途的替代,越来越多的研究人员对此感兴趣。本综述中包含的研究为实际的 EC-SERS 分析应用开辟了无限的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验