Suppr超能文献

胚胎干细胞与胚体对重力机械刺激的差异单细胞反应。

Differential Single Cell Responses of Embryonic Stem Cells Versus Embryoid Bodies to Gravity Mechanostimulation.

机构信息

Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Mountain View, California, USA.

Sector of Microtechnologies, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.

出版信息

Stem Cells Dev. 2022 Jul;31(13-14):346-356. doi: 10.1089/scd.2022.0037.

Abstract

The forces generated by gravity have shaped life on Earth and impact gene expression and morphogenesis during early development. Conversely, disuse on Earth or during spaceflight, reduces normal mechanical loading of organisms, resulting in altered cell and tissue function. Although gravity mechanical loading in adult mammals is known to promote increased cell proliferation and differentiation, little is known about how distinct cell types respond to gravity mechanostimulation during early development. In this study we sought to understand, with single cell RNA-sequencing resolution, how a 60-min pulse of 50 hypergravity (HG)/5 kPa hydrostatic pressure, influences transcriptomic regulation of developmental processes in the embryoid body (EB) model. Our study included both day-9 EBs and progenitor mouse embryonic stem cells (ESCs) with or without the HG pulse. Single cell t-distributed stochastic neighbor mapping shows limited transcriptome shifts in response to the HG pulse in either ESCs or EBs; this pulse however, induces greater positional shifts in EB mapping compared to ESCs, indicating the influence of mechanotransduction is more pronounced in later states of cell commitment within the developmental program. More specifically, HG resulted in upregulation of self-renewal and angiogenesis genes in ESCs, while in EBs, HG loading was associated with upregulation of Gene Ontology-pathways for multicellular development, mechanical signal transduction, and DNA damage repair. Cluster transcriptome analysis of the EBs show HG promotes maintenance of transitory cell phenotypes in early development; including EB cluster co-expression of markers for progenitor, post-implant epiblast, and primitive endoderm phenotypes with HG pulse but expression exclusivity in the non-pulsed clusters. Pseudotime analysis identified three branching cell types susceptible to HG induction of cell fate decisions. In totality, this study provides novel evidence that ESC maintenance and EB development can be regulated by gravity mechanostimulation and that stem cells committed to a differentiation program are more sensitive to gravity-induced changes to their transcriptome.

摘要

重力产生的力量塑造了地球上的生命,并在早期发育过程中影响基因表达和形态发生。相反,地球上或太空飞行中的不活动会减少生物体的正常机械负荷,导致细胞和组织功能改变。尽管已知成年哺乳动物的重力机械负荷会促进细胞增殖和分化增加,但对于早期发育过程中不同细胞类型如何对重力机械刺激做出反应知之甚少。在这项研究中,我们试图通过单细胞 RNA 测序分辨率来了解,50 倍超重力(HG)/5 kPa 静水压力持续 60 分钟的脉冲如何影响胚状体(EB)模型中发育过程的转录组调控。我们的研究包括有或没有 HG 脉冲的第 9 天 EB 和祖细胞小鼠胚胎干细胞(ESC)。单细胞 t 分布随机邻居映射显示,ESC 或 EB 对 HG 脉冲的反应中仅有有限的转录组变化;然而,与 ESC 相比,该脉冲在 EB 映射中诱导更大的位置变化,这表明在发育程序中细胞承诺的后期状态中,机械转导的影响更为明显。更具体地说,HG 导致 ESC 中自我更新和血管生成基因上调,而在 EB 中,HG 加载与多细胞发育、机械信号转导和 DNA 损伤修复的基因本体途径上调相关。EB 的聚类转录组分析表明,HG 促进了早期发育中转瞬即逝的细胞表型的维持;包括 EB 簇中祖细胞、植入后外胚层和原始内胚层表型标志物的共表达以及 HG 脉冲但在非脉冲簇中表达排他性。拟时间分析确定了三种易受 HG 诱导细胞命运决定的分支细胞类型。总的来说,这项研究提供了新的证据,证明 ESC 维持和 EB 发育可以受到重力机械刺激的调节,并且处于分化程序中的干细胞对其转录组受到重力诱导的变化更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de7/9293686/61a63d691654/scd.2022.0037_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验