Suppr超能文献

基于深度学习的肝细胞癌(HCC)自动分割算法的开发及其在 CT 纹理分析预测 HCC 微血管侵犯中的应用:初步结果。

Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results.

机构信息

Department of Radiology, 119754Konkuk University Medical Center, Seoul, Republic of Korea.

Department of Radiology, 58927Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

Acta Radiol. 2023 Mar;64(3):907-917. doi: 10.1177/02841851221100318. Epub 2022 May 16.

Abstract

BACKGROUND

Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported.

PURPOSE

To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI using computed tomography (CT) texture analysis.

MATERIAL AND METHODS

We retrospectively collected training data from 249 patients with HCC and validation set from 35 patients. Lesions of the training set were manually drawn by radiologist, in the delayed phase. 2D U-Net was selected as the DL architecture. Using the validation set, one radiologist manually drew 2D and 3D regions of interest twice, and the developed DL-AS was performed twice with a one-month time interval. The reproducibility was calculated using intraclass correlation coefficients (ICC). Logistic regression was performed to predict MVI.

RESULTS

ICC was in the range of 0.190-0.998/0.341-0.997 in the manual 3D/2D segmentation. In contrast, it was perfect in 3D/2D using DL-AS, with a success rate of 88.6% for the detection of HCC. For predicting MVI, sphericity was a significant parameter (odds ratio <0.001; 95% confidence interval <0.001-0.206;  = 0.020) for predicting MVI using 2D DL-AS. However, 3D DL-AS segmentation did not yield a predictive parameter.

CONCLUSION

The auto-segmentation of HCC using DL-AS provides perfect reproducibility, although it failed to detect 11.4% (4/35). However, the extracted parameters yielded different important predictors of MVI in HCC. Sphericity was a significant predictor in 2D DL-AS and 3D manual segmentation, while discrete compactness was a significant predictor in 2D manual segmentation.

摘要

背景

最近已经开发出自动分割技术来获取客观数据。利用放射组学预测肝细胞癌(HCC)的微血管侵犯(MVI)已有报道。

目的

开发一种基于深度学习的自动分割算法(DL-AS),用于检测 HCC,并利用 CT 纹理分析预测 MVI。

材料和方法

我们回顾性地从 249 例 HCC 患者中收集训练数据,从 35 例患者中收集验证集。在延迟期,由放射科医生手动绘制训练集的病变。选择 2D U-Net 作为 DL 架构。使用验证集,一位放射科医生手动绘制了 2D 和 3D 感兴趣区两次,并且在相隔一个月的时间内使用开发的 DL-AS 进行了两次。使用组内相关系数(ICC)计算重复性。使用逻辑回归预测 MVI。

结果

手动 3D/2D 分割的 ICC 范围为 0.190-0.998/0.341-0.997。相比之下,DL-AS 在 3D/2D 中的效果是完美的,HCC 的检测成功率为 88.6%。对于预测 MVI,球形度是一个重要的预测参数(优势比<0.001;95%置信区间<0.001-0.206;=0.020),用于预测 2D DL-AS 的 MVI。然而,3D DL-AS 分割没有产生预测参数。

结论

使用 DL-AS 对 HCC 进行自动分割可提供完美的可重复性,尽管它未能检测到 11.4%(4/35)的 HCC。然而,提取的参数在 HCC 的 MVI 预测中产生了不同的重要预测因子。球形度是 2D DL-AS 和 3D 手动分割的重要预测因子,而离散紧密度是 2D 手动分割的重要预测因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验