Grabbet Björn, Taiem Abdullah, Cioc Răzvan C, Bruijnincx Pieter C A, Thevenon Arnaud
Utrecht University, Organic Chemistry & Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht 3584 CG, the Netherlands.
Macromolecules. 2025 Apr 4;58(8):4215-4224. doi: 10.1021/acs.macromol.4c02601. eCollection 2025 Apr 22.
Bioderived monomers, readily available from biomass via atom- and redox-efficient processes, will need to play a major role in the development of sustainable polymeric materials. Here, we show that a family of tricyclic monomers, efficiently made from biobased furans via Diels-Alder chemistry, allows the production of polyenes with diverse thermo/physical properties through ring opening metathesis polymerization (ROMP). Via small structural variations, we offer insight into the intricacies of monomer design and its implications for polymerization. Notably, the thermostable polyenes all show very similar head-to-tail regioregularities, -linkage isomerism distributions, and narrow dispersities. Additionally, the monomers exhibit rare reactivity with ethyl vinyl ether, which can be used as a chain transfer agent, enabling the synthesis of monotelechelic polyenes. The monomers do differ substantially in polymerization rate, spanning two orders of magnitude, in the extent of molecular weight control and in the properties of the resulting amorphous polymers. With glass transition temperatures ranging from 116 to 217 °C and degradation temperatures exceeding 350 °C, these materials are among the highest performing biobased homopolymers reported. We elucidate these variations, demonstrating that the ROMP is profoundly influenced by subtle structural changes in the monomers.
通过原子和氧化还原高效过程可从生物质中轻松获得的生物衍生单体,将需要在可持续聚合物材料的开发中发挥主要作用。在此,我们表明,通过狄尔斯-阿尔德化学由生物基呋喃高效制备的一类三环单体,能够通过开环易位聚合(ROMP)制备出具有多种热/物理性质的多烯。通过微小的结构变化,我们深入了解了单体设计的复杂性及其对聚合反应的影响。值得注意的是,热稳定的多烯均表现出非常相似的头对尾区域规整性、-键异构分布以及窄分散性。此外,这些单体与乙烯基乙醚表现出罕见的反应性,乙烯基乙醚可作为链转移剂,从而实现单端基多烯的合成。这些单体在聚合速率、分子量控制程度以及所得无定形聚合物的性质方面存在显著差异,聚合速率跨度达两个数量级。这些材料的玻璃化转变温度在116至217°C之间,降解温度超过350°C,是所报道的性能最佳的生物基均聚物之一。我们阐明了这些变化,表明ROMP受到单体细微结构变化的深刻影响。