Suppr超能文献

与身体脂肪指数相比,无脂肪质量指数、内脏脂肪水平和肌肉质量百分比能更好地解释主动脉压力以及动脉结构和功能特性与预期值的偏差。

Fat-Free Mass Index, Visceral Fat Level, and Muscle Mass Percentage Better Explain Deviations From the Expected Value of Aortic Pressure and Structural and Functional Arterial Properties Than Body Fat Indexes.

作者信息

Gómez-García Mariana, Torrado Juan, Pereira María, Bia Daniel, Zócalo Yanina

机构信息

Departamento de Educación Física y Salud, Instituto Superior de Educación Física, Universidad de la República, Montevideo, Uruguay.

CUiiDARTE-Movimiento, Actividad, Salud (CUiiDARTE-MAS), Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay.

出版信息

Front Nutr. 2022 Apr 29;9:856198. doi: 10.3389/fnut.2022.856198. eCollection 2022.

Abstract

UNLABELLED

Bioelectrical impedance analysis (BIA)-derived indexes [e.g., fat (FMI) and fat-free mass indexes (FFMI), visceral fat level (VFL)] are used to characterize obesity as a cardiovascular risk factor (CRF). The BIA-derived index that better predicts arterial variability is still discussed.

AIMS

To determine: (1) the association of classical [weight, height, body mass index (BMI), basal metabolic rate (BMR)] and BIA-derived indexes, with arterial properties deviations from expected values (arterial z-scores); (2) maximum arterial variations attributable to BIA-derived indexes; (3) whether the composition of total body, trunk and/or limbs is most closely associated with arterial variations.

METHODS

Hemodynamic, structural, and functional parameters of different histological types of arteries were assessed ( = 538, 7-85 years). Classical and BIA-derived indexes [fat mass and percentage, FMI, VFL, muscle mass percentage (PMM), FFMI, and percentage] were measured (mono- and multi-segmental devices). Arterial z-scores were obtained using age-related equations derived from individuals not-exposed to CRFs ( = 1,688).

RESULTS

First, regardless of the classical index considered, the associations with the arterial properties showed a specific hierarchy order: diameters and local stiffness > aortic and brachial blood pressure (BP) > regional stiffness. Second, all the associations of FMI and FFMI with z-scores were positive. Third, FFMI exceeded the association obtained with BMI and BMR, considering structural z-scores. In contrast, FMI did not exceed the association with z-scores achieved by BMI and BMR. Fourth, regardless of CRFs and classical indexes, arterial z-scores would be mainly explained by FFMI, VFL, and PMM. Fifth, regardless of the body-segment considered, the levels of association between FMI and z-scores did not exceed those found for classic and FFMI. Total fat mass and trunk indexes showed a greater strength of association with z-scores than the FMI of limbs. Sixth, compared to lower limb FFMI indexes, total and upper limbs FFMI showed higher levels of association with z-scores.

CONCLUSIONS

FFMI (but not FMI) exceeded the strength of association seen between BMI or BMR and structural z-scores. Regardless of the body segment analyzed, the associations between FMI and z-scores did not exceed those found with classic and FFMI. Arterial z-scores could be independently explained by FFMI, VFL, and PMM.

摘要

未标注

生物电阻抗分析(BIA)得出的指标[如脂肪(FMI)和去脂体重指数(FFMI)、内脏脂肪水平(VFL)]被用于将肥胖表征为心血管危险因素(CRF)。能更好预测动脉变异性的BIA得出的指标仍在讨论中。

目的

确定:(1)经典指标[体重、身高、体重指数(BMI)、基础代谢率(BMR)]和BIA得出的指标与动脉特性偏离预期值(动脉z评分)之间的关联;(2)BIA得出的指标所致的最大动脉变化;(3)全身、躯干和/或四肢的组成是否与动脉变化关系最为密切。

方法

评估了不同组织学类型动脉的血流动力学、结构和功能参数(n = 538,7 - 85岁)。测量了经典指标和BIA得出的指标[脂肪量和百分比、FMI、VFL、肌肉量百分比(PMM)、FFMI和百分比](单段和多段设备)。使用从不暴露于CRF的个体得出的与年龄相关的方程获得动脉z评分(n = 1,688)。

结果

首先,无论考虑哪种经典指标,其与动脉特性的关联都呈现出特定的层次顺序:直径和局部硬度 > 主动脉和肱动脉血压(BP)> 区域硬度。其次,FMI和FFMI与z评分的所有关联均为正。第三,考虑结构z评分时,FFMI超过了与BMI和BMR的关联。相比之下,FMI没有超过与BMI和BMR的z评分关联。第四,无论CRF和经典指标如何,动脉z评分主要由FFMI、VFL和PMM解释。第五,无论考虑身体的哪个部位,FMI与z评分之间的关联水平都没有超过经典指标和FFMI的关联。总脂肪量和躯干指标与z评分的关联强度大于四肢的FMI。第六,与下肢FFMI指标相比,全身和上肢FFMI与z评分的关联水平更高。

结论

FFMI(而非FMI)超过了BMI或BMR与结构z评分之间的关联强度。无论分析身体的哪个部位,FMI与z评分之间的关联都没有超过经典指标和FFMI的关联。动脉z评分可由FFMI、VFL和PMM独立解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b1/9099434/b1a43889e4bf/fnut-09-856198-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验