Jawahar Malathy, Prassanna J, Ravi Vinayakumar, Anbarasi L Jani, Jasmine S Graceline, Manikandan R, Sekaran Ramesh, Kannan Suthendran
Leather Process Technology Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020 India.
School of Computer Science and Engineering, Vellore Institute of Technology, 600 127 Chennai, India.
Multimed Tools Appl. 2022;81(28):40451-40468. doi: 10.1007/s11042-022-13183-6. Epub 2022 May 10.
The decision-making process is very crucial in healthcare, which includes quick diagnostic methods to monitor and prevent the COVID-19 pandemic disease from spreading. Computed tomography (CT) is a diagnostic tool used by radiologists to treat COVID patients. COVID x-ray images have inherent texture variations and similarity to other diseases like pneumonia. Manually diagnosing COVID X-ray images is a tedious and challenging process. Extracting the discriminant features and fine-tuning the classifiers using low-resolution images with a limited COVID x-ray dataset is a major challenge in computer aided diagnosis. The present work addresses this issue by proposing and implementing Histogram Oriented Gradient (HOG) features trained with an optimized Random Forest (RF) classifier. The proposed HOG feature extraction method is evaluated with Gray-Level Co-Occurrence Matrix (GLCM) and Hu moments. Results confirm that HOG is found to reflect the local description of edges effectively and provide excellent structural features to discriminate COVID and non-COVID when compared to the other feature extraction techniques. The performance of the RF is compared with other classifiers such as Linear Regression (LR), Linear Discriminant Analysis (LDA), K-nearest neighbor (kNN), Classification and Regression Trees (CART), Random Forest (RF), Support Vector Machine (SVM), and Multi-layer perceptron neural network (MLP). Experimental results show that the highest classification accuracy (99. 73%) is achieved using HOG trained by using the Random Forest (RF) classifier. The proposed work has provided promising results to assist radiologists/physicians in automatic COVID diagnosis using X-ray images.
决策过程在医疗保健中至关重要,其中包括快速诊断方法,以监测和预防新冠疫情的传播。计算机断层扫描(CT)是放射科医生用于治疗新冠患者的诊断工具。新冠X光图像具有固有的纹理变化,并且与肺炎等其他疾病相似。手动诊断新冠X光图像是一个繁琐且具有挑战性的过程。在计算机辅助诊断中,使用有限的新冠X光数据集的低分辨率图像提取判别特征并微调分类器是一项重大挑战。本研究通过提出并实现用优化的随机森林(RF)分类器训练的方向梯度直方图(HOG)特征来解决这个问题。所提出的HOG特征提取方法用灰度共生矩阵(GLCM)和Hu矩进行评估。结果证实,与其他特征提取技术相比,HOG能够有效地反映边缘的局部描述,并提供出色的结构特征来区分新冠和非新冠情况。将随机森林的性能与其他分类器进行比较,如线性回归(LR)、线性判别分析(LDA)、K近邻(kNN)、分类与回归树(CART)、随机森林(RF)支持向量机(SVM)和多层感知器神经网络(MLP)。实验结果表明,使用由随机森林(RF)分类器训练的HOG可实现最高分类准确率(99.73%)。所提出的工作为协助放射科医生/医生使用X光图像进行新冠自动诊断提供了有希望的结果。