Suppr超能文献

一种用于肺结节分类的新型混合特征提取模型。

A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules.

作者信息

Kailasam S Piramu, Sathik M Mohamed

机构信息

Research Scholar, Research and Development Centre, Bharathiar University,Coimbatore, India. Email:

出版信息

Asian Pac J Cancer Prev. 2019 Feb 26;20(2):457-468. doi: 10.31557/APJCP.2019.20.2.457.

Abstract

In this paper an improved Computer Aided Design system can offer a second opinion to radiologists on early diagnosis of pulmonary nodules on CT (Computer Tomography) images. A Deep Convolutional Neural Network (DCNN) method is used for feature extraction and hybridize as combination of Convolutional Neural Network (CNN), Histogram of Oriented Gradient (HOG), Extended Histogram of Oriented Gradients (ExHOG) and Local Binary Pattern (LBP). A combination of shape, texture, scaling, rotation, translation features extracted using HOG, LBP and CNN. The Homogeneous descriptors used to extract the feature of lung images from Lung Image Database Consortium (LIDC) are given to classifiers Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Tree and Random Forest to classify nodules and non-nodules. Experimental results demonstrate the effectiveness of the proposed method in terms of accuracy which gives best result than the competing methods.

摘要

在本文中,一种改进的计算机辅助设计系统可以就CT(计算机断层扫描)图像上肺结节的早期诊断向放射科医生提供第二种意见。采用深度卷积神经网络(DCNN)方法进行特征提取,并将其与卷积神经网络(CNN)、方向梯度直方图(HOG)、扩展方向梯度直方图(ExHOG)和局部二值模式(LBP)相结合。使用HOG、LBP和CNN提取形状、纹理、缩放、旋转、平移特征的组合。用于从肺部图像数据库联盟(LIDC)中提取肺部图像特征的同质描述符被提供给支持向量机(SVM)、K近邻(KNN)、决策树和随机森林等分类器,以对结节和非结节进行分类。实验结果证明了该方法在准确性方面的有效性,其结果优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4fd/6897038/c5d0cead9f5e/APJCP-20-457-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验