Suppr超能文献

基于胸部X光图像监督式机器学习的COVID-19异常检测与分类方法

COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images.

作者信息

Hasoon Jamal N, Fadel Ali Hussein, Hameed Rasha Subhi, Mostafa Salama A, Khalaf Bashar Ahmed, Mohammed Mazin Abed, Nedoma Jan

机构信息

Department of Computer Science, Mustansiriyah University, 10001 Baghdad, Iraq.

Department of Computer Science, University of Diyala, 32001 Diyala, Iraq.

出版信息

Results Phys. 2021 Dec;31:105045. doi: 10.1016/j.rinp.2021.105045. Epub 2021 Nov 22.

Abstract

The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.

摘要

术语COVID-19是“2019冠状病毒”的缩写,它被视为一场威胁数百万人生命的全球大流行病。该疾病的早期检测为康复和防止传播提供了充足机会。本文提出了一种通过使用X射线图像进行图像处理来对COVID-19进行分类和早期检测的方法。应用了一系列程序,包括预处理(图像去噪、图像阈值处理和形态学操作)、感兴趣区域(ROI)检测与分割、特征提取(局部二值模式(LBP)、梯度直方图(HOG)和哈勒克纹理特征)以及分类(K近邻(KNN)和支持向量机(SVM))。特征提取算子和分类器的组合产生了六个模型,即LBP-KNN、HOG-KNN、Haralick-KNN、LBP-SVM、HOG-SVM和Haralick-SVM。基于5000张图像的测试样本,采用5折交叉验证的训练百分比对这六个模型进行了测试。评估结果显示诊断准确率高达89.2%至98.66%。LBP-KNN模型优于其他模型,其平均准确率为98.66%,灵敏度为97.76%,特异性为100%,精度为100%。所提出的通过使用X射线图像进行图像处理来对COVID-19进行早期检测和分类的方法被证明是可行的,它提供了一种端到端的结构,无需手动特征提取和手动选择方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ba/8607738/4815299042ba/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验