Suppr超能文献

基于数据驱动的定量固有危害标准在按设计安全范式下的纳米产品开发中的应用:以银纳米形态为例

Data-Driven Quantitative Intrinsic Hazard Criteria for Nanoproduct Development in a Safe-by-Design Paradigm: A Case Study of Silver Nanoforms.

作者信息

Furxhi Irini, Bengalli Rossella, Motta Giulia, Mantecca Paride, Kose Ozge, Carriere Marie, Haq Ehtsham Ul, O'Mahony Charlie, Blosi Magda, Gardini Davide, Costa Anna

机构信息

Transgero Ltd, Limerick V42V384, Ireland.

Department of Accounting and Finance, Kemmy Business School, University of Limerick, Limerick V94T9PX, Ireland.

出版信息

ACS Appl Nano Mater. 2023 Feb 16;6(5):3948-3962. doi: 10.1021/acsanm.3c00173. eCollection 2023 Mar 10.

Abstract

The current European (EU) policies, that is, the Green Deal, envisage safe and sustainable practices for chemicals, which include nanoforms (NFs), at the earliest stages of innovation. A theoretically safe and sustainable by design (SSbD) framework has been established from EU collaborative efforts toward the definition of quantitative criteria in each SSbD dimension, namely, the human and environmental safety dimension and the environmental, social, and economic sustainability dimensions. In this study, we target the safety dimension, and we demonstrate the journey toward quantitative intrinsic hazard criteria derived from findable, accessible, interoperable, and reusable data. Data were curated and merged for the development of new approach methodologies, that is, quantitative structure-activity relationship models based on regression and classification machine learning algorithms, with the intent to predict a hazard class. The models utilize system (i.e., hydrodynamic size and polydispersity index) and non-system (i.e., elemental composition and core size)-dependent nanoscale features in combination with biological in vitro attributes and experimental conditions for various silver NFs, functional antimicrobial textiles, and cosmetics applications. In a second step, interpretable rules (criteria) followed by a certainty factor were obtained by exploiting a Bayesian network structure crafted by expert reasoning. The probabilistic model shows a predictive capability of ≈78% (average accuracy across all hazard classes). In this work, we show how we shifted from the conceptualization of the SSbD framework toward the realistic implementation with pragmatic instances. This study reveals (i) quantitative intrinsic hazard criteria to be considered in the safety aspects during synthesis stage, (ii) the challenges within, and (iii) the future directions for the generation and distillation of such criteria that can feed SSbD paradigms. Specifically, the criteria can guide material engineers to synthesize NFs that are inherently safer from alternative nanoformulations, at the earliest stages of innovation, while the models enable a fast and cost-efficient in silico toxicological screening of previously synthesized and hypothetical scenarios of yet-to-be synthesized NFs.

摘要

当前的欧洲(欧盟)政策,即绿色新政,设想在创新的最初阶段就对包括纳米形式(NFs)在内的化学品采取安全且可持续的做法。通过欧盟的协同努力,已建立了一个理论上安全且设计可持续(SSbD)的框架,以定义每个SSbD维度的定量标准,即人类和环境安全维度以及环境、社会和经济可持续性维度。在本研究中,我们针对安全维度,展示了从可查找、可访问、可互操作和可重复使用的数据中得出定量内在危害标准的过程。为了开发新方法学,即基于回归和分类机器学习算法的定量构效关系模型,以预测危害类别,我们对数据进行了整理和合并。这些模型利用了系统(即流体动力学尺寸和多分散指数)和非系统(即元素组成和核心尺寸)相关的纳米尺度特征,并结合了各种银纳米颗粒、功能性抗菌纺织品和化妆品应用的生物体外属性及实验条件。第二步,通过利用专家推理构建的贝叶斯网络结构,获得了带有确定性因子的可解释规则(标准)。该概率模型显示出约78%的预测能力(所有危害类别的平均准确率)。在这项工作中,我们展示了如何从SSbD框架的概念化转向通过实际案例进行切实可行的实施。本研究揭示了(i)在合成阶段安全方面应考虑的定量内在危害标准,(ii)其中的挑战,以及(iii)此类标准的生成和提炼的未来方向,这些标准可为SSbD范式提供支持。具体而言,这些标准可指导材料工程师在创新的最初阶段,从替代纳米配方中合成本质上更安全的纳米颗粒,而这些模型能够对先前合成的以及尚未合成的纳米颗粒的假设情景进行快速且经济高效的计算机毒理学筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0058/10012170/358376281856/an3c00173_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验