Plé Thomas, Lagardère Louis, Piquemal Jean-Philip
Sorbonne Université, LCT, UMR 7616 CNRS F-75005 Paris France thomas.ple@sorbonne-université louis.lagardere@sorbonne-université jean-philip.piquemal@sorbonne-université.
Chem Sci. 2023 Oct 3;14(44):12554-12569. doi: 10.1039/d3sc02581k. eCollection 2023 Nov 15.
We introduce FENNIX (Force-Field-Enhanced Neural Network InteraXions), a hybrid approach between machine-learning and force-fields. We leverage state-of-the-art equivariant neural networks to predict local energy contributions and multiple atom-in-molecule properties that are then used as geometry-dependent parameters for physically-motivated energy terms which account for long-range electrostatics and dispersion. Using high-accuracy data (small organic molecules/dimers), we trained a first version of the model. Exhibiting accurate gas-phase energy predictions, FENNIX is transferable to the condensed phase. It is able to produce stable Molecular Dynamics simulations, including nuclear quantum effects, for water predicting accurate liquid properties. The extrapolating power of the hybrid physically-driven machine learning FENNIX approach is exemplified by computing: (i) the solvated alanine dipeptide free energy landscape; (ii) the reactive dissociation of small molecules.
我们引入了FENNIX(力场增强神经网络相互作用),这是一种机器学习与力场相结合的混合方法。我们利用最先进的等变神经网络来预测局部能量贡献和多个分子内原子性质,然后将这些作为与几何结构相关的参数用于考虑长程静电和色散的物理能量项。使用高精度数据(小分子/二聚体),我们训练了该模型的第一个版本。FENNIX在气相能量预测方面表现准确,并且可转移到凝聚相。它能够进行稳定的分子动力学模拟,包括核量子效应,用于预测水的准确液体性质。通过计算以下内容可例证混合物理驱动的机器学习FENNIX方法的外推能力:(i)溶剂化丙氨酸二肽的自由能景观;(ii)小分子的反应性解离。