Suppr超能文献

批量掩模:用于无肢或非标准体型生物的自动图像分割。

Batch-Mask: Automated Image Segmentation for Organisms with Limbless or Non-Standard Body Forms.

机构信息

Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1105 N University Ave, Michigan 48109, USA.

Computer Science, University of Michigan, Michigan 48109, USA.

出版信息

Integr Comp Biol. 2022 Oct 29;62(4):1111-1120. doi: 10.1093/icb/icac036.

Abstract

Efficient comparisons of biological color patterns are critical for understanding the mechanisms by which organisms evolve in nature, including sexual selection, predator-prey interactions, and thermoregulation. However, limbless, elongate, or spiral-shaped organisms do not conform to the standard orientation and photographic techniques required for many automated analyses. Currently, large-scale color analysis of elongate animals requires time-consuming manual landmarking, which reduces their representation in coloration research despite their ecological importance. We present Batch-Mask: an automated, customizable workflow to automatically analyze large photographic datasets to isolate non-standard biological organisms from the background. Batch-Mask is completely open-source and does not depend on any proprietary software. We also present a user guide for fine-tuning weights to a custom dataset and incorporating existing manual visual analysis tools (e.g., micaToolbox) into a single automated workflow for comparing color patterns across images. Batch-Mask was 60x faster than manual landmarking and produced masks that correctly identified 96% of all snake pixels. To validate our approach, we used micaToolbox to compare pattern energy in a sample set of snake photographs segmented by Batch-Mask and humans and found no significant difference in the output results. The fine-tuned weights, user guide, and automated workflow substantially decrease the amount of time and attention required to quantitatively analyze non-standard biological subjects. With these tools, biologists can compare color, pattern, and shape differences in large datasets that include significant morphological variation in elongate body forms. This advance is especially valuable for comparative analyses of natural history collections across a broad range of morphologies. Through landmark-free automation, Batch-Mask can greatly expand the scale of space, time, or taxonomic breadth across which color variation can be quantitatively examined.

摘要

高效比较生物颜色模式对于理解生物在自然界中进化的机制至关重要,包括性选择、捕食者-猎物相互作用和体温调节。然而,无肢、细长或螺旋形的生物不符合许多自动化分析所需的标准方向和摄影技术。目前,对细长动物的大规模颜色分析需要耗时的手动地标标记,这降低了它们在颜色研究中的代表性,尽管它们具有生态重要性。我们提出了 Batch-Mask:一种自动化、可定制的工作流程,用于自动分析大型摄影数据集,以从背景中分离非标准生物。Batch-Mask 完全开源,不依赖任何专有软件。我们还提供了一个用户指南,用于为自定义数据集调整权重,并将现有的手动视觉分析工具(例如 micaToolbox)合并到单个自动化工作流程中,以比较图像之间的颜色模式。Batch-Mask 比手动地标标记快 60 倍,并且生成的蒙版正确识别了 96%的所有蛇像素。为了验证我们的方法,我们使用 micaToolbox 比较了通过 Batch-Mask 和人类分割的蛇照片样本集中的图案能量,发现输出结果没有显著差异。经过微调的权重、用户指南和自动化工作流程大大减少了定量分析非标准生物样本所需的时间和注意力。有了这些工具,生物学家可以在包括长形身体形态的显著形态变异的大型数据集之间比较颜色、图案和形状差异。这一进展对于比较自然历史收藏的形态学范围特别有价值。通过无地标自动化,Batch-Mask 可以大大扩展可以定量检查颜色变化的空间、时间或分类广度的范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验