Suppr超能文献

中性和带电受限流体的边界蒙特卡罗方法

Boundary-Monte Carlo Method for Neutral and Charged Confined Fluids.

作者信息

Vo Phuong, Forsman Jan, Woodward Clifford E

机构信息

School of Science, University of New South Wales, Canberra, Canberra ACT 2600, Australia.

Department of Theoretical Chemistry, Chemical Centre, Lund University, Lund S-22100, Sweden.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3766-3780. doi: 10.1021/acs.jctc.1c01146. Epub 2022 May 16.

Abstract

In this work, we describe a new Monte Carlo (MC) simulation method to investigate highly coupled fluids in confined geometries at a constant chemical potential. This method is based on so-called multi-scale Hamiltonian methods, wherein the chemical potential is determined using a more amenable Hamiltonian for a fluid in an "outer" region, which facilitates standard methods, such as grand canonical MC simulations or Widom's particle insertion method. The (inner region) fluid of interest is placed in diffusive contact with the simpler outer fluid via a boundary zone wherein the Hamiltonian is transformed. The current method utilizes an ideal fluid for the outer regions, which allows for implicit rather than explicit simulations. Only the boundary and inner region need explicit consideration; hence, the nomenclature used is boundary-Monte Carlo. We illustrate the utility of the method for simple neutral and charged fluids in cylindrical and planar pores. In the latter case, we use a dense room-temperature ionic liquid model and illustrate how the boundary zone establishes a proper Donnan equilibrium between inner and outer fluids in the presence of charged planar electrodes. Thus, the method allows direct calculation of properties such as the differential capacitance, without the need for additional difficult calculations of the requisite Donnan potential.

摘要

在这项工作中,我们描述了一种新的蒙特卡罗(MC)模拟方法,用于研究在恒定化学势下受限几何结构中的高度耦合流体。该方法基于所谓的多尺度哈密顿方法,其中化学势是使用“外部”区域中流体更易于处理的哈密顿量来确定的,这有利于采用标准方法,如巨正则MC模拟或维登粒子插入法。感兴趣的(内部区域)流体通过哈密顿量发生变换的边界区域与更简单的外部流体进行扩散接触。当前方法在外部区域使用理想流体,这允许进行隐式而非显式模拟。仅需明确考虑边界和内部区域;因此,所使用的命名法为边界蒙特卡罗。我们展示了该方法对于圆柱形和平面孔隙中简单中性和带电流体的实用性。在后一种情况下,我们使用密集的室温离子液体模型,并说明了边界区域如何在存在带电平面电极的情况下在内部和外部流体之间建立适当的唐南平衡。因此,该方法允许直接计算诸如微分电容等性质,而无需对必要的唐南电势进行额外的困难计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验