Suppr超能文献

基于光线追踪的蒙特卡罗模拟导出的 CW 弦到 Alpha 角的转换模型。

Translation model for CW chord to angle Alpha derived from a Monte-Carlo simulation based on raytracing.

机构信息

Department of Experimental Ophthalmology, Universität des Saarlandes, Homburg/Saar, Germany.

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Universität des Saarlandes, Homburg/Saar, Germany.

出版信息

PLoS One. 2022 May 16;17(5):e0267028. doi: 10.1371/journal.pone.0267028. eCollection 2022.

Abstract

BACKGROUND

The Chang-Waring chord is provided by many ophthalmic instruments, but proper interpretation of this chord for use in centring refractive procedures at the cornea is not fully understood. The purpose of this study is to develop a strategy for translating the Chang-Waring chord (position of pupil centre relative to the Purkinje reflex PI) into angle Alpha using raytracing techniques.

METHODS

The retrospective analysis was based on a large dataset of 8959 measurements of 8959 eyes from 1 clinical centre, using the Casia2 anterior segment tomographer. An optical model based on: corneal front and back surface radius Ra and Rp, asphericities Qa and Qp, corneal thickness CCT, anterior chamber depth ACD, and pupil centre position (X-Y position: PupX and PupY), was defined for each measurement. Using raytracing rays with an incident angle IX and IY the CW chord (CWX and CWY) was calculated. Using these data, a multivariable linear model was built up in terms of a Monte-Carlo simulation for a simple translation of incident ray angle to CW chord.

RESULTS

Raytracing allows for calculation of the CW chord CWX/CWY from biometric measures and the incident ray angle IX/IY. In our dataset mean values of CWX = 0.32±0.30 mm and CWY = -0.10±0.26 mm were derived for a mean incident ray angle (angle Alpha) of IX = -5.02±1.77° and IY = 0.01±1.47°. The raytracing results could be modelled with a linear multivariable model, and the effect sizes for the prediction model for CWX are identified as Ra, Qa, Rp, CCT, ACD, PupX, PupY, IX, and for CWY they are Ra, Rp, PupY, and IY.

CONCLUSION

Today the CW chord can be directly measured with any biometer, topographer or tomographer. If biometric measures of Ra, Qa, Rp, CCT, ACD, PupX, PupY are available in addition to the CW chord components CWX and CWY, a prediction of angle Alpha is possible using a simple matrix operation.

摘要

背景

许多眼科仪器都提供 Chang-Waring 弦,但对于如何将其正确解释为用于角膜屈光手术的中心定位,人们尚未完全理解。本研究旨在开发一种使用光线追踪技术将 Chang-Waring 弦(瞳孔中心相对于 Purkinje 反射 PI 的位置)转换为角度 Alpha 的策略。

方法

回顾性分析基于来自 1 个临床中心的 8959 只眼睛的 8959 项测量值的大型数据集,使用 Casia2 眼前节断层扫描仪进行。为每个测量值定义了基于以下参数的光学模型:角膜前表面和后表面半径 Ra 和 Rp、非球面度 Qa 和 Qp、角膜厚度 CCT、前房深度 ACD 和瞳孔中心位置(X-Y 位置:PupX 和 PupY)。使用光线追踪光线的入射角度 IX 和 IY,计算出 CW 弦(CWX 和 CWY)。使用这些数据,通过蒙特卡罗模拟建立了一个多元线性模型,用于简单地将入射光线角度转换为 CW 弦。

结果

光线追踪允许从生物测量数据和入射光线角度 IX/IY 计算出 CW 弦 CWX/CWY。在我们的数据集,平均 CWX 值为 0.32±0.30mm,CWY 值为-0.10±0.26mm,平均入射光线角度(角度 Alpha)为 IX =-5.02±1.77°和 IY = 0.01±1.47°。光线追踪结果可以用一个多元线性模型进行建模,CWX 的预测模型的效应大小确定为 Ra、Qa、Rp、CCT、ACD、PupX、PupY、IX,CWY 的效应大小确定为 Ra、Rp、PupY 和 IY。

结论

如今,任何生物测量仪、地形图仪或断层扫描仪都可以直接测量 CW 弦。如果除了 CW 弦的分量 CWX 和 CWY 之外,还可以获得 Ra、Qa、Rp、CCT、ACD、PupX、PupY 的生物测量值,则可以使用简单的矩阵运算预测角度 Alpha。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e60/9109904/286d4d1f3b2e/pone.0267028.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验