Suppr超能文献

基于相位角的癌症住院患者营养及预后评估模型。

A simple assessment model based on phase angle for malnutrition and prognosis in hospitalized cancer patients.

机构信息

Department of Oncology, Changzhi People's Hospital Affiliated to Shanxi Medical University, Shanxi Province, 046000, China.

Postgraduate Department of Mathematics, University of York, YO10 5DD, UK.

出版信息

Clin Nutr. 2022 Jun;41(6):1320-1327. doi: 10.1016/j.clnu.2022.04.018. Epub 2022 Apr 26.

Abstract

BACKGROUND & AIMS: Malnutrition in cancer patients is a common but under-diagnosed condition that has negative effects on clinical outcomes. The development of an easy and reliable malnutrition assessment tool is thus critical for identification and nutritional support. We aimed to develop a phase angle (PA)-based prediction model of malnutrition and evaluate it in patient prognosis.

METHODS

A retrospective cohort of data consisting of demographic, clinical parameter and PA test from 702 adult hospitalized cancer patients between June 2020 to February 2021 was analysed. PAs for 6 body sites were measured by a body composition analyser. Patient-generated subjective global assessment (PG-SGA) scale was used as the diagnostic standard of nutritional status (PG-SGA ≥ 4 points defined as malnutrition). Decision tree, mean decrease accuracy of random forest, stepAIC strategy and test of generalized likelihood ratio were employed to select important variables and develop models for predicting PG-SGA binary classification (PG-SGA < 4 or ≥ 4 as a split). Survival curves were plotted by using the Kaplan-Meier method.

RESULTS

In all, 490 (69.8%) patients were malnourished according to their actual PG-SGA scores. Except for age, tumor type and body mass index (BMI), PA of the left arm was found to influence malnutrition classification and incorporated in the final predictive model. The model achieved good performance with an AUC of 0.813, 75.9% sensitivity and 73.3% specificity. The actual and predicted survival curves were almost overlapped.

CONCLUSION

This study provides a simple nutritional assessment tool which may be used to facilitate oncology physicians to identify cancer patients at nutritional risk and potentially implement nutritional support.

CLINICAL TRIAL NO

ChiCTR2100047858.

摘要

背景与目的

癌症患者营养不良是一种常见但诊断不足的情况,对临床结局有负面影响。因此,开发一种简单且可靠的营养不良评估工具对于识别和营养支持至关重要。我们旨在开发一种基于相位角(PA)的营养不良预测模型,并评估其在患者预后中的应用。

方法

回顾性分析了 2020 年 6 月至 2021 年 2 月期间 702 例住院成年癌症患者的人口统计学、临床参数和 PA 测试数据。使用人体成分分析仪测量 6 个体位的 PA。患者生成的主观整体评估(PG-SGA)量表被用作营养状况的诊断标准(PG-SGA≥4 分定义为营养不良)。采用决策树、随机森林平均减少精度、stepAIC 策略和广义似然比检验来选择重要变量,并开发预测 PG-SGA 二分类(PG-SGA<4 或≥4 作为分割)的模型。通过 Kaplan-Meier 方法绘制生存曲线。

结果

根据实际 PG-SGA 评分,共有 490(69.8%)例患者存在营养不良。除了年龄、肿瘤类型和体重指数(BMI)外,左臂 PA 也被发现影响营养不良分类,并被纳入最终预测模型。该模型具有良好的性能,AUC 为 0.813,灵敏度为 75.9%,特异性为 73.3%。实际和预测的生存曲线几乎重叠。

结论

本研究提供了一种简单的营养评估工具,可用于帮助肿瘤医生识别有营养风险的癌症患者,并可能实施营养支持。

临床试验注册号

ChiCTR2100047858。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验