Suppr超能文献

癌症患者营养不良预测模型的研究进展

Research progress on predictive models for malnutrition in cancer patients.

作者信息

Zheng Pengcheng, Wang Bo, Luo Yan, Duan Ran, Feng Tong

机构信息

Clinical Medical College, Chengdu Medical College, Chengdu, China.

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.

出版信息

Front Nutr. 2024 Aug 21;11:1438941. doi: 10.3389/fnut.2024.1438941. eCollection 2024.

Abstract

Disease-related malnutrition is a prevalent issue among cancer patients, affecting approximately 40-80% of those undergoing treatment. This condition is associated with numerous adverse outcomes, including extended hospitalization, increased morbidity and mortality, delayed wound healing, compromised muscle function and reduced overall quality of life. Moreover, malnutrition significantly impedes patients' tolerance of various cancer therapies, such as surgery, chemotherapy, and radiotherapy, resulting in increased adverse effects, treatment delays, postoperative complications, and higher referral rates. At present, numerous countries and regions have developed objective assessment models to predict the risk of malnutrition in cancer patients. As advanced technologies like artificial intelligence emerge, new modeling techniques offer potential advantages in accuracy over traditional methods. This article aims to provide an exhaustive overview of recently developed models for predicting malnutrition risk in cancer patients, offering valuable guidance for healthcare professionals during clinical decision-making and serving as a reference for the development of more efficient risk prediction models in the future.

摘要

疾病相关营养不良是癌症患者中普遍存在的问题,约40%-80%的接受治疗的患者受其影响。这种情况与众多不良后果相关,包括住院时间延长、发病率和死亡率增加、伤口愈合延迟、肌肉功能受损以及整体生活质量下降。此外,营养不良显著妨碍患者对各种癌症治疗(如手术、化疗和放疗)的耐受性,导致不良反应增加、治疗延迟、术后并发症以及更高的转诊率。目前,许多国家和地区已经开发出客观评估模型来预测癌症患者的营养不良风险。随着人工智能等先进技术的出现,新的建模技术在准确性方面比传统方法具有潜在优势。本文旨在详尽概述最近开发的用于预测癌症患者营养不良风险的模型,为医疗保健专业人员在临床决策过程中提供有价值的指导,并为未来开发更有效的风险预测模型提供参考。

相似文献

1
Research progress on predictive models for malnutrition in cancer patients.
Front Nutr. 2024 Aug 21;11:1438941. doi: 10.3389/fnut.2024.1438941. eCollection 2024.
2
Nutritional Risk Screening in Cancer Patients: The First Step Toward Better Clinical Outcome.
Front Nutr. 2021 Apr 7;8:603936. doi: 10.3389/fnut.2021.603936. eCollection 2021.
3
Diagnostic test accuracy of nutritional tools used to identify undernutrition in patients with colorectal cancer: a systematic review.
JBI Database System Rev Implement Rep. 2015 May 15;13(4):141-87. doi: 10.11124/jbisrir-2015-1673.
4
Malnutrition screening in outpatients receiving hyperbaric oxygen therapy: an opportunity for improvement?
Diving Hyperb Med. 2018 Dec 24;48(4):206-207. doi: 10.28920/dhm48.4.206-207.
6
Malnutrition in cardiac surgery: food for thought.
Eur J Prev Cardiol. 2014 Apr;21(4):475-83. doi: 10.1177/2047487312452969. Epub 2012 Jun 27.
8
9
Scored-GLIM as an effective tool to assess nutrition status and predict survival in patients with cancer.
Clin Nutr. 2021 Jun;40(6):4225-4233. doi: 10.1016/j.clnu.2021.01.033. Epub 2021 Jan 29.

引用本文的文献

2
Interventions to reduce social isolation and food insecurity in older adults: a systematic review.
Front Nutr. 2025 Jun 6;12:1607057. doi: 10.3389/fnut.2025.1607057. eCollection 2025.
3
Predictive modeling for metastasis in oncology: current methods and future directions.
Ann Med Surg (Lond). 2025 May 21;87(6):3489-3508. doi: 10.1097/MS9.0000000000003279. eCollection 2025 Jun.
5
Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice.
World J Gastroenterol. 2025 Mar 14;31(10):102725. doi: 10.3748/wjg.v31.i10.102725.
6
A prognostic nomogram of non-small cell lung cancer based on tumor marker inflammatory nutrition score.
Transl Lung Cancer Res. 2024 Dec 31;13(12):3392-3406. doi: 10.21037/tlcr-24-708. Epub 2024 Dec 26.
7
Prognostic value of combined systemic inflammation response index and prognostic nutritional index in colorectal cancer patients.
World J Gastrointest Surg. 2024 Dec 27;16(12):3794-3805. doi: 10.4240/wjgs.v16.i12.3794.

本文引用的文献

3
A simple assessment model based on phase angle for malnutrition and prognosis in hospitalized cancer patients.
Clin Nutr. 2022 Jun;41(6):1320-1327. doi: 10.1016/j.clnu.2022.04.018. Epub 2022 Apr 26.
4
Clinical Significance of the Prealbumin Level in Gastric Cancer Patients Who Receive Curative Treatment.
J Gastrointest Cancer. 2023 Mar;54(1):27-34. doi: 10.1007/s12029-021-00777-w. Epub 2021 Dec 18.
5
A Novel Nomogram for Early Identification and Intervention in Colorectal Cancer Patients at Risk for Malnutrition.
Am Surg. 2023 May;89(5):1485-1496. doi: 10.1177/00031348211058620. Epub 2021 Dec 17.
7
Development and validation of a rapid-decision pathway to diagnose malnutrition in patients with lung cancer.
Nutrition. 2021 Apr;84:111102. doi: 10.1016/j.nut.2020.111102. Epub 2020 Dec 5.
9
Classification Tree-Based Machine Learning to Visualize and Validate a Decision Tool for Identifying Malnutrition in Cancer Patients.
JPEN J Parenter Enteral Nutr. 2021 Nov;45(8):1736-1748. doi: 10.1002/jpen.2070. Epub 2021 Mar 15.
10
Relationship between Phase Angle and Objective and Subjective Indicators of Nutritional Status in Cancer Patients: A Systematic Review.
Nutr Cancer. 2021;73(11-12):2201-2210. doi: 10.1080/01635581.2020.1850815. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验