Suppr超能文献

用于神经科学、神经形态计算和生物电子学的多功能有机材料、器件及机制

Multifunctional Organic Materials, Devices, and Mechanisms for Neuroscience, Neuromorphic Computing, and Bioelectronics.

作者信息

Hoch Felix L, Wang Qishen, Lim Kian-Guan, Loke Desmond K

机构信息

Faculty of Engineering, University of Southern Denmark, 5230, Odense, Denmark.

School of Integrated Circuits, Peking University, Beijing, 100871, People's Republic of China.

出版信息

Nanomicro Lett. 2025 May 8;17(1):251. doi: 10.1007/s40820-025-01756-7.

Abstract

Neuromorphic computing has the potential to overcome limitations of traditional silicon technology in machine learning tasks. Recent advancements in large crossbar arrays and silicon-based asynchronous spiking neural networks have led to promising neuromorphic systems. However, developing compact parallel computing technology for integrating artificial neural networks into traditional hardware remains a challenge. Organic computational materials offer affordable, biocompatible neuromorphic devices with exceptional adjustability and energy-efficient switching. Here, the review investigates the advancements made in the development of organic neuromorphic devices. This review explores resistive switching mechanisms such as interface-regulated filament growth, molecular-electronic dynamics, nanowire-confined filament growth, and vacancy-assisted ion migration, while proposing methodologies to enhance state retention and conductance adjustment. The survey examines the challenges faced in implementing low-power neuromorphic computing, e.g., reducing device size and improving switching time. The review analyses the potential of these materials in adjustable, flexible, and low-power consumption applications, viz. biohybrid spiking circuits interacting with biological systems, systems that respond to specific events, robotics, intelligent agents, neuromorphic computing, neuromorphic bioelectronics, neuroscience, and other applications, and prospects of this technology.

摘要

神经形态计算有潜力克服传统硅技术在机器学习任务中的局限性。大型交叉阵列和基于硅的异步脉冲神经网络的最新进展催生了很有前景的神经形态系统。然而,开发用于将人工神经网络集成到传统硬件中的紧凑型并行计算技术仍然是一项挑战。有机计算材料提供了价格合理、生物相容的神经形态器件,具有出色的可调性和节能开关特性。在此,本综述研究了有机神经形态器件开发方面取得的进展。本综述探讨了诸如界面调控丝状生长、分子电子动力学、纳米线限制丝状生长和空位辅助离子迁移等电阻开关机制,同时提出了增强状态保持和电导调节的方法。该调查研究了在实现低功耗神经形态计算时面临的挑战,例如减小器件尺寸和缩短开关时间。本综述分析了这些材料在可调、灵活和低功耗应用中的潜力,即与生物系统相互作用的生物混合脉冲电路、对特定事件做出响应的系统、机器人技术、智能体、神经形态计算、神经形态生物电子学、神经科学及其他应用,以及该技术的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac78/12061836/8cca60ec16cd/40820_2025_1756_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验