Department of Psychology, University of Milano Bicocca, Piazza dell'ateneo nuovo 1, Milan, Italy.
Department of History, Society and Human Studies, University of Salento, Lecce, Italy.
Neurol Sci. 2022 Sep;43(9):5243-5249. doi: 10.1007/s10072-022-06140-6. Epub 2022 May 17.
Neuropsychological assessment of cognitive functioning is a crucial part of clinical care: diagnosis, treatment planning, treatment evaluation, research, and prediction of long-term outcomes. The Equivalent Score (ES) method is used to score numerous neuropsychological tests. The ES0 and the ES4 are defined respectively by the outer tolerance limit and the median. The intermediate ESs are commonly calculated using a z-score approach even when the distribution of neuropsychological data is typically non-parametric. To calculate more accurate ESs, we propose that the intermediate ESs need to be calculated based on a non-parametric rank subdivision of the distribution of the adjusted scores.
We make three simulations to explain the differences between the classical z-score approach, the rank-based approach, and the direct subdivision of the dependent variable.
The results show that the rank procedure permits dividing the region between ES0 and ES4 into three areas with the same density. The z-score procedure is quite similar to the direct subdivision of the dependent variable and different from the rank subdivision.
By subdividing intermediate ESs using the rank-subdivision, neuropsychological tests can be scored more accurately, also considering that the two essential points for diagnosis (ES = 0 and ES = 4) remain the same. Future normative data definition should consider the best procedure for scoring with ES.
神经心理学认知功能评估是临床护理的重要组成部分:诊断、治疗计划、治疗评估、研究和长期预后预测。等效分数(ES)方法用于评分许多神经心理学测试。ES0 和 ES4 分别由外部容忍限和中位数定义。中间 ES 通常使用 z 分数方法计算,即使神经心理学数据的分布通常是非参数的。为了计算更准确的 ES,我们建议根据调整后的分数分布的非参数等级细分来计算中间 ES。
我们进行了三次模拟,以解释经典 z 分数方法、基于等级的方法和因变量直接细分之间的差异。
结果表明,等级程序允许将 ES0 和 ES4 之间的区域划分为三个具有相同密度的区域。z 分数程序与因变量的直接细分非常相似,与等级细分不同。
通过使用等级细分细分中间 ES,可以更准确地对神经心理学测试进行评分,同时考虑到诊断的两个重要要点(ES=0 和 ES=4)保持不变。未来的规范数据定义应考虑 ES 评分的最佳程序。