Ulldemolins Anna, Seras-Franzoso Joaquin, Andrade Fernanda, Rafael Diana, Abasolo Ibane, Gener Petra, Schwartz Simo
Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.
Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza 50009, Spain.
Cancer Drug Resist. 2021 Mar 19;4(1):44-68. doi: 10.20517/cdr.2020.59. eCollection 2021.
Advanced cancer is still considered an incurable disease because of its metastatic spread to distal organs and progressive gain of chemoresistance. Even though considerable treatment progress and more effective therapies have been achieved over the past years, recurrence in the long-term and undesired side effects are still the main drawbacks of current clinical protocols. Moreover, a majority of chemotherapeutic drugs are highly hydrophobic and need to be diluted in organic solvents, which cause high toxicity, in order to reach effective therapeutic dose. These limitations of conventional cancer therapies prompted the use of nanomedicine, the medical application of nanotechnology, to provide more effective and safer cancer treatment. Potential of nanomedicines to overcome resistance, ameliorate solubility, improve pharmacological profile, and reduce adverse effects of chemotherapeutical drugs is thus highly regarded. Their use in the clinical setting has increased over the last decade. Among the various existing nanosystems, nanoparticles have the ability to transform conventional medicine by reducing the adverse effects and providing a controlled release of therapeutic agents. Also, their small size facilitates the intracellular uptake. Here, we provide a closer review of clinical prospects and mechanisms of action of nanomedicines to overcome drug resistance. The significance of specific targeting towards cancer cells is debated as well.
晚期癌症仍被视为不治之症,因为它会转移至远端器官并逐渐产生化疗耐药性。尽管在过去几年中已经取得了相当大的治疗进展并出现了更有效的疗法,但长期复发和不良副作用仍是当前临床方案的主要缺陷。此外,大多数化疗药物具有高度疏水性,需要在有机溶剂中稀释(这会导致高毒性)才能达到有效的治疗剂量。传统癌症疗法的这些局限性促使人们使用纳米医学(纳米技术在医学上的应用)来提供更有效、更安全的癌症治疗。因此,纳米药物在克服耐药性、改善溶解性、改善药理学特性以及减少化疗药物不良反应方面的潜力备受关注。在过去十年中,它们在临床环境中的使用有所增加。在各种现有的纳米系统中,纳米颗粒有能力通过减少不良反应和实现治疗剂的控释来变革传统药物。此外,它们的小尺寸便于细胞内摄取。在此,我们更深入地探讨纳米药物克服耐药性的临床前景和作用机制。针对癌细胞的特异性靶向的重要性也存在争议。
Cancer Drug Resist. 2021-3-19
Drug Resist Updat. 2021-9
Eur J Pharm Biopharm. 2015-6
PDA J Pharm Sci Technol. 2011
Curr Pharm Des. 2020
Acc Chem Res. 2019-5-23
Drug Resist Updat. 2017-5-21
Mater Today Bio. 2025-8-13
Mechanobiol Med. 2023-8-9
Naunyn Schmiedebergs Arch Pharmacol. 2025-6
Cancer Drug Resist. 2019
Nanomedicine (Lond). 2020-12
Drug Resist Updat. 2020-9
J Biomater Sci Polym Ed. 2020-6
Nanomaterials (Basel). 2020-2-20
Signal Transduct Target Ther. 2019
Cancers (Basel). 2019-11-25