Suppr超能文献

深度学习技术对抗击 COVID-19 的贡献:2020 年学术成果的文献计量分析

Contribution of Deep-Learning Techniques Toward Fighting COVID-19: A Bibliometric Analysis of Scholarly Production During 2020.

作者信息

Chicaiza Janneth, Villota Stephany D, Vinueza-Naranjo Paola G, Rumipamba-Zambrano Ruben

机构信息

Departamento de Ciencias de la Computación y ElectrónicaUniversidad Técnica Particular de Loja Loja 110105 Ecuador.

Gestión de Investigación, Desarrollo e InnovaciónInstituto Nacional de Investigación en Salud Pública Quito 170136 Ecuador.

出版信息

IEEE Access. 2022 Mar 11;10:33281-33300. doi: 10.1109/ACCESS.2022.3159025. eCollection 2022.

Abstract

COVID-19 has dramatically affected various aspects of human society with worldwide repercussions. Firstly, a serious public health issue has been generated, resulting in millions of deaths. Also, the global economy, social coexistence, psychological status, mental health, and the human-environment relationship/dynamics have been seriously affected. Indeed, abrupt changes in our daily lives have been enforced, starting with a mandatory quarantine and the application of biosafety measures. Due to the magnitude of these effects, research efforts from different fields were rapidly concentrated around the current pandemic to mitigate its impact. Among these fields, Artificial Intelligence (AI) and Deep Learning (DL) have supported many research papers to help combat COVID-19. The present work addresses a bibliometric analysis of this scholarly production during 2020. Specifically, we analyse quantitative and qualitative indicators that give us insights into the factors that have allowed papers to reach a significant impact on traditional metrics and alternative ones registered in social networks, digital mainstream media, and public policy documents. In this regard, we study the correlations between these different metrics and attributes. Finally, we analyze how the last DL advances have been exploited in the context of the COVID-19 situation.

摘要

新冠疫情对人类社会的各个方面产生了巨大影响,其影响波及全球。首先,引发了严重的公共卫生问题,导致数百万人死亡。此外,全球经济、社会共存、心理状态、精神健康以及人类与环境的关系/动态都受到了严重影响。事实上,我们的日常生活发生了突然变化,首先是强制隔离和生物安全措施的实施。由于这些影响的规模巨大,不同领域的研究工作迅速围绕当前的疫情展开,以减轻其影响。在这些领域中,人工智能(AI)和深度学习(DL)为许多研究论文提供了支持,以帮助抗击新冠疫情。本研究针对2020年期间这一学术成果进行了文献计量分析。具体而言,我们分析了定量和定性指标,这些指标让我们深入了解了使论文在传统指标以及在社交网络、数字主流媒体和公共政策文件中记录的替代指标上产生重大影响的因素。在这方面,我们研究这些不同指标与属性之间的相关性。最后,我们分析了在新冠疫情背景下,深度学习的最新进展是如何得到应用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8270/9088792/35adde289c98/chica1-3159025.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验