Suppr超能文献

用于新冠肺炎胸部X光图像分类的基于注意力机制的VGG-16模型。

Attention-based VGG-16 model for COVID-19 chest X-ray image classification.

作者信息

Sitaula Chiranjibi, Hossain Mohammad Belayet

机构信息

School of Information Technology, Deakin University, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC 3216 Australia.

出版信息

Appl Intell (Dordr). 2021;51(5):2850-2863. doi: 10.1007/s10489-020-02055-x. Epub 2020 Nov 17.

Abstract

Computer-aided diagnosis (CAD) methods such as Chest X-rays (CXR)-based method is one of the cheapest alternative options to diagnose the early stage of COVID-19 disease compared to other alternatives such as Polymerase Chain Reaction (PCR), Computed Tomography (CT) scan, and so on. To this end, there have been few works proposed to diagnose COVID-19 by using CXR-based methods. However, they have limited performance as they ignore the spatial relationships between the region of interests (ROIs) in CXR images, which could identify the likely regions of COVID-19's effect in the human lungs. In this paper, we propose a novel attention-based deep learning model using the attention module with VGG-16. By using the attention module, we capture the spatial relationship between the ROIs in CXR images. In the meantime, by using an appropriate convolution layer (4th pooling layer) of the VGG-16 model in addition to the attention module, we design a novel deep learning model to perform fine-tuning in the classification process. To evaluate the performance of our method, we conduct extensive experiments by using three COVID-19 CXR image datasets. The experiment and analysis demonstrate the stable and promising performance of our proposed method compared to the state-of-the-art methods. The promising classification performance of our proposed method indicates that it is suitable for CXR image classification in COVID-19 diagnosis.

摘要

诸如基于胸部X光(CXR)的方法等计算机辅助诊断(CAD)方法,是与其他诊断方法(如聚合酶链反应(PCR)、计算机断层扫描(CT)等)相比,诊断COVID-19疾病早期阶段最便宜的替代选项之一。为此,已经有一些使用基于CXR的方法来诊断COVID-19的工作被提出。然而,它们的性能有限,因为它们忽略了CXR图像中感兴趣区域(ROI)之间的空间关系,而这种关系可以识别COVID-19在人肺部可能产生影响的区域。在本文中,我们提出了一种新颖的基于注意力的深度学习模型,该模型使用带有VGG-16的注意力模块。通过使用注意力模块,我们捕捉了CXR图像中ROI之间的空间关系。同时,除了注意力模块外,通过使用VGG-16模型的适当卷积层(第4池化层),我们设计了一种新颖的深度学习模型,以便在分类过程中进行微调。为了评估我们方法的性能,我们使用三个COVID-19 CXR图像数据集进行了广泛的实验。实验和分析表明,与现有方法相比,我们提出的方法具有稳定且有前景的性能。我们提出的方法具有有前景的分类性能,这表明它适用于COVID-19诊断中的CXR图像分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3597/7669488/a842b51f5049/10489_2020_2055_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验