Suppr超能文献

时间变化的病毒脱落在公共卫生环境监测建模中的作用:重新审视 2013 年以色列脊髓灰质炎病毒爆发。

The role of time-varying viral shedding in modelling environmental surveillance for public health: revisiting the 2013 poliovirus outbreak in Israel.

机构信息

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Central Virology Laboratory, Chaim Sheba Medical Center, Tel-Hashomer, Israel.

出版信息

J R Soc Interface. 2022 May;19(190):20220006. doi: 10.1098/rsif.2022.0006. Epub 2022 May 18.

Abstract

Environmental pathogen surveillance is a sensitive tool that can detect early-stage outbreaks, and it is being used to track poliovirus and other pathogens. However, interpretation of longitudinal environmental surveillance signals is difficult because the relationship between infection incidence and viral load in wastewater depends on time-varying shedding intensity. We developed a mathematical model of time-varying poliovirus shedding intensity consistent with expert opinion across a range of immunization states. Incorporating this shedding model into an infectious disease transmission model, we analysed quantitative, polymerase chain reaction data from seven sites during the 2013 Israeli poliovirus outbreak. Compared to a constant shedding model, our time-varying shedding model estimated a slower peak (four weeks later), with more of the population reached by a vaccination campaign before infection and a lower cumulative incidence. We also estimated the population shed virus for an average of 29 days (95% CI 28-31), longer than expert opinion had suggested for a population that was purported to have received three or more inactivated polio vaccine (IPV) doses. One explanation is that IPV may not substantially affect shedding duration. Using realistic models of time-varying shedding coupled with longitudinal environmental surveillance may improve our understanding of outbreak dynamics of poliovirus, SARS-CoV-2, or other pathogens.

摘要

环境病原体监测是一种敏感的工具,可以检测早期爆发的情况,目前正在用于追踪脊髓灰质炎病毒和其他病原体。然而,由于废水中感染发生率与病毒载量之间的关系取决于随时间变化的脱落强度,因此对纵向环境监测信号的解释很困难。我们开发了一个与不同免疫状态下的专家意见一致的随时间变化的脊髓灰质炎病毒脱落强度的数学模型。将该脱落模型纳入传染病传播模型,我们分析了 2013 年以色列脊髓灰质炎病毒爆发期间七个地点的定量聚合酶链反应数据。与恒定脱落模型相比,我们的随时间变化的脱落模型估计的峰值出现时间更晚(晚四周),在感染之前,通过疫苗接种运动达到的人群更多,累积发病率更低。我们还估计人群平均脱落病毒 29 天(95%CI28-31),比专家意见认为接受三剂或更多灭活脊髓灰质炎疫苗(IPV)的人群脱落时间要长。一种解释是,IPV 可能不会显著影响脱落持续时间。使用随时间变化的脱落的现实模型并结合纵向环境监测,可能会提高我们对脊髓灰质炎病毒、SARS-CoV-2 或其他病原体爆发动态的理解。

相似文献

3
Evaluation of vaccine derived poliovirus type 2 outbreak response options: A randomized controlled trial, Karachi, Pakistan.
Vaccine. 2018 Mar 20;36(13):1766-1771. doi: 10.1016/j.vaccine.2018.02.051. Epub 2018 Feb 21.
4
Oral and fecal polio vaccine excretion following bOPV vaccination among Israeli infants.
Vaccine. 2023 Jun 23;41(28):4144-4150. doi: 10.1016/j.vaccine.2023.05.036. Epub 2023 Jun 1.
8
Assessing the stability of polio eradication after the withdrawal of oral polio vaccine.
PLoS Biol. 2018 Apr 27;16(4):e2002468. doi: 10.1371/journal.pbio.2002468. eCollection 2018 Apr.
10
Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10625-E10633. doi: 10.1073/pnas.1808798115. Epub 2018 Oct 18.

引用本文的文献

2
Post-recovery viral shedding shapes wastewater-based epidemiological inferences.
Commun Med (Lond). 2025 May 22;5(1):193. doi: 10.1038/s43856-025-00908-5.
4
Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage.
mSphere. 2023 Aug 24;8(4):e0013223. doi: 10.1128/msphere.00132-23. Epub 2023 Jun 20.
5
Temporal and spatial relationships of CrAssphage and enteric viral and bacterial pathogens in wastewater in North Carolina.
Water Res. 2023 Jul 1;239:120008. doi: 10.1016/j.watres.2023.120008. Epub 2023 Apr 27.
6
Assessing the effectiveness of environmental sampling for surveillance of foot-and-mouth disease virus in a cattle herd.
Front Vet Sci. 2023 Mar 13;10:1074264. doi: 10.3389/fvets.2023.1074264. eCollection 2023.
7
A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data.
Sci Total Environ. 2023 Jan 20;857(Pt 1):159326. doi: 10.1016/j.scitotenv.2022.159326. Epub 2022 Oct 8.

本文引用的文献

1
2
Inferring Numbers of Wild Poliovirus Excretors Using Quantitative Environmental Surveillance.
Vaccines (Basel). 2021 Aug 6;9(8):870. doi: 10.3390/vaccines9080870.
3
Using viral load to model disease dynamics.
Science. 2021 Jul 16;373(6552):280-281. doi: 10.1126/science.abj4185.
4
Preventing Scientific and Ethical Misuse of Wastewater Surveillance Data.
Environ Sci Technol. 2021 Sep 7;55(17):11473-11475. doi: 10.1021/acs.est.1c04325. Epub 2021 Aug 25.
6
Making waves: Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19.
Water Res. 2021 Sep 1;202:117438. doi: 10.1016/j.watres.2021.117438. Epub 2021 Jul 12.
7
Ethics Guidance for Environmental Scientists Engaged in Surveillance of Wastewater for SARS-CoV-2.
Environ Sci Technol. 2021 Jul 6;55(13):8484-8491. doi: 10.1021/acs.est.1c00308. Epub 2021 Jun 8.
8
Estimating epidemiologic dynamics from cross-sectional viral load distributions.
Science. 2021 Jul 16;373(6552). doi: 10.1126/science.abh0635. Epub 2021 Jun 3.
9
Developing a Flexible National Wastewater Surveillance System for COVID-19 and Beyond.
Environ Health Perspect. 2021 Apr;129(4):45002. doi: 10.1289/EHP8572. Epub 2021 Apr 20.
10
Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges.
Curr Opin Environ Sci Health. 2020 Oct;17:49-71. doi: 10.1016/j.coesh.2020.09.006. Epub 2020 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验