Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Science. 2021 Jul 16;373(6552). doi: 10.1126/science.abh0635. Epub 2021 Jun 3.
Estimating an epidemic's trajectory is crucial for developing public health responses to infectious diseases, but case data used for such estimation are confounded by variable testing practices. We show that the population distribution of viral loads observed under random or symptom-based surveillance-in the form of cycle threshold (Ct) values obtained from reverse transcription quantitative polymerase chain reaction testing-changes during an epidemic. Thus, Ct values from even limited numbers of random samples can provide improved estimates of an epidemic's trajectory. Combining data from multiple such samples improves the precision and robustness of this estimation. We apply our methods to Ct values from surveillance conducted during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in a variety of settings and offer alternative approaches for real-time estimates of epidemic trajectories for outbreak management and response.
估计疫情的轨迹对于制定传染病的公共卫生应对措施至关重要,但用于此类估计的病例数据受到可变检测实践的影响。我们表明,在随机或基于症状的监测下观察到的病毒载量的人群分布在疫情期间发生变化——以逆转录定量聚合酶链反应检测获得的循环阈值 (Ct) 值的形式。因此,即使是有限数量的随机样本的 Ct 值也可以提供对疫情轨迹的改进估计。将来自多个此类样本的数据进行组合可以提高该估计的精度和稳健性。我们将我们的方法应用于在各种环境中进行的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 大流行期间进行的监测的 Ct 值,并提供了用于实时估计疫情轨迹的替代方法,以便进行疫情管理和应对。