高通量数字病理学 一种手持、多重和人工智能动力的相移全幻灯片扫描仪。

High-throughput digital pathology a handheld, multiplexed, and AI-powered ptychographic whole slide scanner.

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.

Pathology and Laboratory Medicine, University of Connecticut Health Centre, Farmington, CT, 06030, USA.

出版信息

Lab Chip. 2022 Jul 12;22(14):2657-2670. doi: 10.1039/d2lc00084a.

Abstract

The recent advent of whole slide imaging (WSI) systems has moved digital pathology closer to diagnostic applications and clinical practices. Integrating WSI with machine learning promises the growth of this field in upcoming years. Here we report the design and implementation of a handheld, colour-multiplexed, and AI-powered ptychographic whole slide scanner for digital pathology applications. This handheld scanner is built using low-cost and off-the-shelf components, including red, green, and blue laser diodes for sample illumination, a modified stage for programmable sample positioning, and a synchronized image sensor pair for data acquisition. We smear a monolayer of goat blood cells on the main sensor for high-resolution lensless coded ptychographic imaging. The synchronized secondary sensor acts as a non-contact encoder for precisely tracking the absolute object position for ptychographic reconstruction. For WSI, we introduce a new phase-contrast-based focus metric for post-acquisition autofocusing of both stained and unstained specimens. We show that the scanner can resolve the 388-nm linewidth on the resolution target and acquire gigapixel images with a 14 mm × 11 mm area in ∼70 seconds. The imaging performance is validated with regular stained pathology slides, unstained thyroid smears, and malaria-infected blood smears. The deep neural network developed in this study further enables high-throughput cytometric analysis using the recovered complex amplitude. The reported do-it-yourself scanner offers a portable solution to transform the high-end WSI system into one that can be made widely available at a low cost. The capability of high-throughput quantitative phase imaging may also find applications in rapid on-site evaluations.

摘要

近年来,全玻片成像(WSI)系统的出现使数字病理学更接近诊断应用和临床实践。将 WSI 与机器学习相结合,有望在未来几年推动该领域的发展。在这里,我们报告了一种用于数字病理学应用的手持式、彩色多路复用和人工智能动力的相衬全玻片扫描仪的设计和实现。这款手持式扫描仪使用低成本和现成的组件构建,包括用于样品照明的红、绿、蓝激光二极管、用于可编程样品定位的改进载物台,以及用于数据采集的同步图像传感器对。我们在主传感器上涂抹单层山羊血细胞,以进行高分辨率无透镜编码相衬成像。同步的辅助传感器作为非接触式编码器,用于精确跟踪相衬重建的绝对物体位置。对于 WSI,我们引入了一种新的基于相衬的聚焦度量标准,用于对染色和未染色标本进行后采集自动对焦。我们表明,该扫描仪可以分辨分辨率目标上的 388nm 线宽,并在大约 70 秒内以 14mm×11mm 的面积获取千兆像素图像。使用常规染色病理载玻片、未染色甲状腺涂片和疟疾感染的血涂片对成像性能进行了验证。本研究中开发的深度神经网络进一步实现了使用恢复的复振幅进行高通量细胞计量分析。这款 DIY 扫描仪提供了一种便携式解决方案,可以将高端 WSI 系统转变为低成本、广泛可用的系统。高通量定量相衬成像的能力也可能在快速现场评估中找到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索