Suppr超能文献

利用具有最大 3'末端截短 crRNA 的 CRISPR/Cpf1 实现高效单核苷酸微生物基因组编辑。

Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3'-End-Truncated crRNAs.

机构信息

Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea.

Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.

出版信息

ACS Synth Biol. 2022 Jun 17;11(6):2134-2143. doi: 10.1021/acssynbio.2c00054. Epub 2022 May 18.

Abstract

Mismatch tolerance, a cause of the off-target effect, impedes accurate genome editing with the CRISPR/Cas system. Herein, we observed that oligonucleotide-directed single-base substitutions could be rarely introduced in the microbial genome using CRISPR/Cpf1-mediated negative selection. Because crRNAs have the ability to recognize and discriminate among specific target DNA sequences, we systematically compared the effects of modified crRNAs with 3'-end nucleotide truncations and a single mismatch on the genomic cleavage activity of FnCpf1 in. Five nucleotides could be maximally truncated at the crRNA 3'-end for the efficient cleavage of the DNA targets of and in the cells. However, target cleavage in the genome was inefficient when a single mismatch was simultaneously introduced in the maximally 3'-end-truncated crRNA. Based on these results, we assumed that the maximally truncated crRNA-Cpf1 complex can distinguish between single-base-edited and unedited targets in vivo. Compared to other crRNAs with shorter truncations, maximally 3'-end-truncated crRNAs showed highly efficient single-base substitutions (>80%) in the DNA targets of and . Furthermore, the editing efficiency for the 24 bases in both and showed success rates of 79 and 50%, respectively. We successfully introduced single-nucleotide indels in and with editing efficiencies of 79 and 62%, respectively. Collectively, the maximally truncated crRNA-Cpf1 complex could perform efficient base and nucleotide editing regardless of the target base location or mutation type; this system is a simple and efficient tool for microbial genome editing, including indel correction, at the single-nucleotide resolution.

摘要

错配容忍是脱靶效应的一个原因,它会阻碍 CRISPR/Cas 系统对基因组进行精确编辑。在此,我们观察到,使用 CRISPR/Cpf1 介导的负选择,可以在微生物基因组中很少引入寡核苷酸定向的单碱基替换。因为 crRNA 具有识别和区分特定靶 DNA 序列的能力,我们系统地比较了具有 3'端核苷酸截断和单个错配的修饰 crRNA 对 FnCpf1 在 中的基因组切割活性的影响。在细胞中,crRNA 的 3'端最多可以截断 5 个核苷酸,以有效地切割 和 的 DNA 靶标。然而,当同时在最大 3'端截断的 crRNA 中引入单个错配时,靶标在基因组中的切割效率很低。基于这些结果,我们假设最大截断的 crRNA-Cpf1 复合物可以在体内区分单碱基编辑和未编辑的靶标。与具有较短截断的其他 crRNA 相比,最大 3'端截断的 crRNA 在 和 的 DNA 靶标中显示出高效的单碱基替换(>80%)。此外,在 和 中的 24 个碱基的编辑效率分别为 79%和 50%。我们成功地在 和 中引入了单核苷酸插入/缺失,编辑效率分别为 79%和 62%。总的来说,最大截断的 crRNA-Cpf1 复合物可以在不考虑靶碱基位置或突变类型的情况下,高效地进行碱基和核苷酸编辑;该系统是一种简单有效的微生物基因组编辑工具,包括在单核苷酸分辨率下进行插入/缺失校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/629a/9208014/97131da207d9/sb2c00054_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验