Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea.
Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
ACS Synth Biol. 2022 Jun 17;11(6):2134-2143. doi: 10.1021/acssynbio.2c00054. Epub 2022 May 18.
Mismatch tolerance, a cause of the off-target effect, impedes accurate genome editing with the CRISPR/Cas system. Herein, we observed that oligonucleotide-directed single-base substitutions could be rarely introduced in the microbial genome using CRISPR/Cpf1-mediated negative selection. Because crRNAs have the ability to recognize and discriminate among specific target DNA sequences, we systematically compared the effects of modified crRNAs with 3'-end nucleotide truncations and a single mismatch on the genomic cleavage activity of FnCpf1 in. Five nucleotides could be maximally truncated at the crRNA 3'-end for the efficient cleavage of the DNA targets of and in the cells. However, target cleavage in the genome was inefficient when a single mismatch was simultaneously introduced in the maximally 3'-end-truncated crRNA. Based on these results, we assumed that the maximally truncated crRNA-Cpf1 complex can distinguish between single-base-edited and unedited targets in vivo. Compared to other crRNAs with shorter truncations, maximally 3'-end-truncated crRNAs showed highly efficient single-base substitutions (>80%) in the DNA targets of and . Furthermore, the editing efficiency for the 24 bases in both and showed success rates of 79 and 50%, respectively. We successfully introduced single-nucleotide indels in and with editing efficiencies of 79 and 62%, respectively. Collectively, the maximally truncated crRNA-Cpf1 complex could perform efficient base and nucleotide editing regardless of the target base location or mutation type; this system is a simple and efficient tool for microbial genome editing, including indel correction, at the single-nucleotide resolution.
错配容忍是脱靶效应的一个原因,它会阻碍 CRISPR/Cas 系统对基因组进行精确编辑。在此,我们观察到,使用 CRISPR/Cpf1 介导的负选择,可以在微生物基因组中很少引入寡核苷酸定向的单碱基替换。因为 crRNA 具有识别和区分特定靶 DNA 序列的能力,我们系统地比较了具有 3'端核苷酸截断和单个错配的修饰 crRNA 对 FnCpf1 在 中的基因组切割活性的影响。在细胞中,crRNA 的 3'端最多可以截断 5 个核苷酸,以有效地切割 和 的 DNA 靶标。然而,当同时在最大 3'端截断的 crRNA 中引入单个错配时,靶标在基因组中的切割效率很低。基于这些结果,我们假设最大截断的 crRNA-Cpf1 复合物可以在体内区分单碱基编辑和未编辑的靶标。与具有较短截断的其他 crRNA 相比,最大 3'端截断的 crRNA 在 和 的 DNA 靶标中显示出高效的单碱基替换(>80%)。此外,在 和 中的 24 个碱基的编辑效率分别为 79%和 50%。我们成功地在 和 中引入了单核苷酸插入/缺失,编辑效率分别为 79%和 62%。总的来说,最大截断的 crRNA-Cpf1 复合物可以在不考虑靶碱基位置或突变类型的情况下,高效地进行碱基和核苷酸编辑;该系统是一种简单有效的微生物基因组编辑工具,包括在单核苷酸分辨率下进行插入/缺失校正。