Suppr超能文献

CRISPR-Cpf1基因编辑系统的建立及多重基因敲除

Establishment of the CRISPR-Cpf1 gene editing system in and multiplexed gene knockout.

作者信息

Liu Suxin, Xiao Fengxu, Li Youran, Zhang Yupeng, Wang Yanling, Shi Guiyang

机构信息

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.

National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China.

出版信息

Synth Syst Biotechnol. 2024 Aug 8;10(1):39-48. doi: 10.1016/j.synbio.2024.08.002. eCollection 2025.

Abstract

is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in . Our system achieved a 100 % knockout efficiency for the single gene and up to 80 % for simultaneous knockout of the double genes and . Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by , , and genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.

摘要

是一种重要的工业微生物。传统的依赖同源重组的基因编辑技术由于依赖抗性基因,往往效率较低。此外,已建立的利用Cas9核酸内切酶的CRISPR基因编辑技术在实现多个基因同时敲除方面面临挑战。为了解决这一限制,开发了CRISPR-Cpf1系统,可在各种微生物中进行多重基因编辑。该系统高效基因编辑能力的关键在于严格筛选高效表达元件,以实现蛋白Cpf1的条件表达。在本研究中,我们使用mCherry作为报告基因,并利用P来调节Cpf1的表达,从而在中建立了CRISPR-Cpf1基因编辑系统。我们的系统对单基因的敲除效率达到100%,对双基因和的同时敲除效率高达80%。此外,一系列蛋白酶缺陷菌株的培养表明,编码的蛋白酶对胞外酶活性有显著贡献(约80%),而由、和基因编码的蛋白酶对胞外酶活性的贡献比例较小。这些发现为工业生物中的有效分子修饰和代谢调控提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f2/11366866/f16c944b9d63/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验