Suppr超能文献

模拟 COVID-19 对野外消防人员的系统风险。

Modeling the systemic risks of COVID-19 on the wildland firefighting workforce.

机构信息

USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 80526, USA.

Department of Agricultural and Resource Economics, Colorado State University, Fort Collins, CO, 80523, USA.

出版信息

Sci Rep. 2022 May 18;12(1):8320. doi: 10.1038/s41598-022-12253-x.

Abstract

Wildfire management in the US relies on a complex nationwide network of shared resources that are allocated based on regional need. While this network bolsters firefighting capacity, it may also provide pathways for transmission of infectious diseases between fire sites. In this manuscript, we review a first attempt at building an epidemiological model adapted to the interconnected fire system, with the aims of supporting prevention and mitigation efforts along with understanding potential impacts to workforce capacity. Specifically, we developed an agent-based model of COVID-19 built on historical wildland fire assignments using detailed dispatch data from 2016-2018, which form a network of firefighters dispersed spatially and temporally across the US. We used this model to simulate SARS-CoV-2 transmission under several intervention scenarios including vaccination and social distancing. We found vaccination and social distancing are effective at reducing transmission at fire incidents. Under a scenario assuming High Compliance with recommended mitigations (including vaccination), infection rates, number of outbreaks, and worker days missed are effectively negligible, suggesting the recommended interventions could successfully mitigate the risk of cascading infections between fires. Under a contrasting Low Compliance scenario, it is possible for cascading outbreaks to emerge leading to relatively high numbers of worker days missed. As the model was built in 2021 before the emergence of the Delta and Omicron variants, the modeled viral parameters and isolation/quarantine policies may have less relevance to 2022, but nevertheless underscore the importance of following basic prevention and mitigation guidance. This work could set the foundation for future modeling efforts focused on mitigating spread of infectious disease at wildland fire incidents to manage both the health of fire personnel and system capacity.

摘要

美国的野火管理依赖于一个复杂的全国性共享资源网络,该网络根据区域需求进行资源分配。虽然这个网络增强了消防能力,但它也可能为传染病在火灾现场之间的传播提供途径。在本文中,我们回顾了首次尝试构建适应相互关联的火灾系统的流行病学模型的情况,目的是支持预防和缓解工作,并了解对劳动力能力的潜在影响。具体来说,我们使用来自 2016-2018 年的详细调度数据,基于历史野火任务,开发了一个基于代理的 COVID-19 模型,该模型形成了一个在美国空间和时间上分散的消防员网络。我们使用该模型模拟了在几种干预情景下(包括疫苗接种和社交距离)SARS-CoV-2 的传播。我们发现疫苗接种和社交距离可有效降低火灾事件中的传播风险。在假设对建议的缓解措施(包括疫苗接种)高度遵守的情况下,感染率、疫情爆发数量和工人缺勤天数有效可忽略不计,表明建议的干预措施可成功减轻火灾之间级联感染的风险。在对比的低遵守情况下,可能会出现级联疫情爆发,导致相对较高的工人缺勤天数。由于该模型是在 2021 年德尔塔和奥密克戎变体出现之前建立的,因此模型中的病毒参数和隔离/检疫政策可能与 2022 年的情况不太相关,但仍强调了遵循基本预防和缓解指导的重要性。这项工作可以为未来集中于减轻野火事件中传染病传播的建模工作奠定基础,以管理消防人员的健康和系统能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e0/9117242/0493ce4bcf9f/41598_2022_12253_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验