文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于在3D打印表面固定抗体的简便表面修饰策略。

A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces.

作者信息

Binkley Brandi, Li Peng

机构信息

Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA.

出版信息

Biosensors (Basel). 2025 Mar 25;15(4):211. doi: 10.3390/bios15040211.


DOI:10.3390/bios15040211
PMID:40277525
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12024930/
Abstract

3D-printed microdevices have become increasingly important to the advancement of point-of-care (POC) immunoassays. Despite its great potential, using 3D-printed surfaces on the solid support for immunorecognition has been limited due to the non-ideal adsorption properties for many photocurable resins. In this work, we report a simple surface modification protocol that works for diverse commercial photocurable resins, improving ELISAs performed directly on 3D-printed devices. This surface modification strategy involves surface activation via air plasma followed by the one-step incubation of GLYMO-labeled streptavidin. We successfully immobilized biotinylated anti-activin A antibodies on the 3D-printed surfaces and performed the complete ELISA protocol on the 3D-printed surfaces. We demonstrated that this protocol achieved an improved performance over passive adsorption for ELISAs. The present method is also compatible with diverse commercial resins and works with both microwells and microchannels. Finally, this method demonstrated a comparable limit of detection to the ELISA performed using commercial microwells. We believe the simplicity and broad compatibility of the present surface modification strategy will facilitate the development of 3D-printed POC ELISA devices.

摘要

3D打印微器件对于即时检测(POC)免疫分析的发展变得越来越重要。尽管具有巨大潜力,但由于许多光固化树脂的吸附性能不理想,在用于免疫识别的固体支持物上使用3D打印表面受到了限制。在这项工作中,我们报告了一种简单的表面修饰方案,该方案适用于多种商用光固化树脂,可改善直接在3D打印器件上进行的酶联免疫吸附测定(ELISA)。这种表面修饰策略包括通过空气等离子体进行表面活化,然后一步孵育GLYMO标记的链霉亲和素。我们成功地将生物素化的抗激活素A抗体固定在3D打印表面上,并在3D打印表面上完成了完整的ELISA方案。我们证明,该方案在ELISA中比被动吸附具有更好的性能。本方法还与多种商用树脂兼容,适用于微孔和微通道。最后,该方法的检测限与使用商用微孔进行的ELISA相当。我们相信,本表面修饰策略的简单性和广泛兼容性将促进3D打印POC ELISA器件的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/140a416afceb/biosensors-15-00211-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/fb11804a20e5/biosensors-15-00211-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/2933d5e9a6e9/biosensors-15-00211-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/0a7ab44666c8/biosensors-15-00211-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/5a806f2f58d5/biosensors-15-00211-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/c4d13e75ed6e/biosensors-15-00211-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/140a416afceb/biosensors-15-00211-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/fb11804a20e5/biosensors-15-00211-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/2933d5e9a6e9/biosensors-15-00211-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/0a7ab44666c8/biosensors-15-00211-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/5a806f2f58d5/biosensors-15-00211-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/c4d13e75ed6e/biosensors-15-00211-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2e/12024930/140a416afceb/biosensors-15-00211-g006.jpg

相似文献

[1]
A Facile Surface Modification Strategy for Antibody Immobilization on 3D-Printed Surfaces.

Biosensors (Basel). 2025-3-25

[2]
Multisubstrate-compatible ELISA procedures for rapid and high-sensitivity immunoassays.

Nat Protoc. 2011-3-10

[3]
3D Printed Modular Immunofiltration Columns for Frequency Mixing-Based Multiplex Magnetic Immunodetection.

Sensors (Basel). 2019-1-3

[4]
Covalently modified enzymatic 3D-printed bioelectrode.

Mikrochim Acta. 2021-10-10

[5]
Laser-printed paper ELISA and hydroxyapatite immobilization for colorimetric congenital anomalies screening in saliva.

Anal Chim Acta. 2024-6-1

[6]
Development of screen-printed electrode based immunosensor for the detection of HER2 antigen in human serum samples.

Bioelectrochemistry. 2017-6-30

[7]
Comparative analysis of polishing protocols on microhardness and surface roughness of occlusal device materials fabricated using microwave-polymerized acrylic or 3D printed resins.

J Prosthet Dent. 2025-2

[8]
Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications.

ACS Appl Mater Interfaces. 2017-5-30

[9]
Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry.

Tissue Eng Part C Methods. 2023-5

[10]
3D-printed capillaric ELISA-on-a-chip with aliquoting.

Lab Chip. 2023-3-14

本文引用的文献

[1]
3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications.

Chem Asian J. 2024-12-16

[2]
A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.

Anal Chim Acta. 2024-4-22

[3]
A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications.

Carbohydr Polym. 2023-7-15

[4]
Recent Advances in 3D Printing of Biomedical Sensing Devices.

Adv Funct Mater. 2022-2-23

[5]
Emerging Technologies of Three-Dimensional Printing and Mobile Health in COVID-19 Immunity and Regenerative Dentistry.

Tissue Eng Part C Methods. 2023-5

[6]
Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties.

Ann Transl Med. 2022-6

[7]
Microfluidic chain reaction of structurally programmed capillary flow events.

Nature. 2022-5

[8]
Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols.

Anal Chem. 2022-5-3

[9]
New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2.

Anal Chim Acta. 2022-1-25

[10]
A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite.

Anal Methods. 2021-3-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索