IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2864-2878. doi: 10.1109/TPAMI.2022.3178874. Epub 2023 Feb 3.
The explosive growth of image data facilitates the fast development of image processing and computer vision methods for emerging visual applications, meanwhile introducing novel distortions to processed images. This poses a grand challenge to existing blind image quality assessment (BIQA) models, which are weak at adapting to subpopulation shift. Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets. However, this type of approach is not scalable to a large number of datasets and is cumbersome to incorporate a newly created dataset as well. In this paper, we formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets, building on what was learned from previously seen data. We first identify five desiderata in the continual setting with three criteria to quantify the prediction accuracy, plasticity, and stability, respectively. We then propose a simple yet effective continual learning method for BIQA. Specifically, based on a shared backbone network, we add a prediction head for a new dataset and enforce a regularizer to allow all prediction heads to evolve with new data while being resistant to catastrophic forgetting of old data. We compute the overall quality score by a weighted summation of predictions from all heads. Extensive experiments demonstrate the promise of the proposed continual learning method in comparison to standard training techniques for BIQA, with and without experience replay. We made the code publicly available at https://github.com/zwx8981/BIQA_CL.
图像数据的爆炸式增长促进了图像处理和计算机视觉方法在新兴视觉应用中的快速发展,同时也给处理后的图像带来了新的失真。这对现有的盲图像质量评估 (BIQA) 模型提出了巨大的挑战,这些模型在适应子群体转移方面能力较弱。最近的研究表明,可以在所有可用的人类评分 IQA 数据集的组合上训练 BIQA 方法。然而,这种方法对于大量数据集不可扩展,并且难以将新创建的数据集纳入其中。在本文中,我们为 BIQA 制定了持续学习,其中模型从 IQA 数据集的流中持续学习,利用从以前看到的数据中学习到的知识。我们首先在持续设置中确定了五个理想条件,并使用三个标准分别量化预测准确性、可塑性和稳定性。然后,我们提出了一种简单而有效的 BIQA 持续学习方法。具体来说,基于共享骨干网络,我们为新数据集添加了一个预测头,并施加正则化项,允许所有预测头随着新数据的出现而演变,同时防止对旧数据的灾难性遗忘。我们通过对所有头部的预测进行加权求和来计算总体质量得分。广泛的实验表明,与标准的 BIQA 训练技术相比,所提出的持续学习方法具有很大的潜力,无论是在有经验回放还是没有经验回放的情况下。我们在 https://github.com/zwx8981/BIQA_CL 上公开了代码。