Hepler Katherine, Kaminski Michael D, Jolin William C, Magnuson Matthew
Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 60801, USA.
Strategic Security Sciences Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA.
Environ Technol Innov. 2021 Feb;21:1-11. doi: 10.1016/j.eti.2020.101177.
Enhancing rapid remediation strategies is paramount for recovery after a large-scale nuclear contamination event in an urban environment. Some current strategies recommend use of readily available equipment, materials, and facilities to expedite recovery. For example, applying pressurized water to contaminated surfaces may effectively remove radioactive contamination. In this study, a commercial power washer removes soluble forms of Eu, Sr, and Cs contamination from common porous building materials, and computer simulations characterize the recycling of the resultant contaminated wash water. Pressure washing the porous building materials under spray conditions typical with do-it-yourself units improved decontamination factors (DFs) for Eu compared to low-pressure application of tap water (majority of two-tailed t-test p-values < 0.1), but pressure did not improve DFs for Cs or Sr. For both pressurized and low-pressure applications, adding potassium ions (K) to promote ion exchange reactions produced significantly higher DFs for tested radionuclides on asphalt, brick, and concrete. The resultant contaminated wash water can be processed through self-prepared chemical filtration beds of clay and sand. Modeled in a prior study, the beds yielded linear trends (R > 0.98) in sensitivity analyses between most bed configuration variables and bed performance variables, permitting flexible ad-hoc bed design. The experimental and simulation results led to estimates of the remediation rate and waste generated after cleaning 250 m of cesium-contaminated concrete from the combined deployment of a power washer and two different mobile treatment beds. The first treatment bed was designed to reduce treatment time and processed 1900 L of wash solution in 70 min using 880 kg of clay/sand infill material. Designed to reduce the solid waste generated, the second bed processed the same solution volume in 1040 min (17 h) using 170 kg of clay/sand infill material. The results of this analysis warrant further investigation of power washing with recycled salt solution as an effective rapid decontamination method with manageable waste.
加强快速修复策略对于城市环境中大规模核污染事件后的恢复至关重要。目前的一些策略建议使用现成的设备、材料和设施来加速恢复。例如,向受污染表面施加加压水可有效去除放射性污染。在本研究中,一台商用高压清洗机可从常见的多孔建筑材料上去除铕、锶和铯污染的可溶形式,并且计算机模拟对所得受污染冲洗水的循环利用进行了表征。与用自来水进行低压冲洗相比,在典型的自助式设备喷雾条件下对多孔建筑材料进行高压冲洗提高了铕的去污因子(DFs)(大多数双尾t检验p值<0.1),但压力并未提高铯或锶的去污因子。对于加压和低压冲洗应用,添加钾离子(K)以促进离子交换反应在沥青、砖块和混凝土上对测试放射性核素产生了显著更高的去污因子。所得受污染冲洗水可通过自行制备的粘土和沙子化学过滤床进行处理。在先前的一项研究中进行建模,这些过滤床在大多数床配置变量和床性能变量之间的敏感性分析中产生了线性趋势(R>0.98),从而允许进行灵活的临时床设计。实验和模拟结果得出了在联合部署一台高压清洗机和两个不同的移动处理床后,清洗250米铯污染混凝土后的修复率和产生的废物估计值。第一个处理床旨在减少处理时间,使用880千克粘土/沙子填充材料在70分钟内处理1900升冲洗溶液。第二个床旨在减少产生的固体废物,使用170千克粘土/沙子填充材料在1040分钟(17小时)内处理相同体积的溶液。该分析结果值得进一步研究用循环盐溶液进行高压冲洗作为一种具有可控废物的有效快速去污方法。