Suppr超能文献

基于忆阻器突触的人工神经通路用于光学介导的运动学习

Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning.

作者信息

He Ke, Liu Yaqing, Yu Jiancan, Guo Xintong, Wang Ming, Zhang Liandong, Wan Changjin, Wang Ting, Zhou Changjiu, Chen Xiaodong

机构信息

Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

出版信息

ACS Nano. 2022 Jun 28;16(6):9691-9700. doi: 10.1021/acsnano.2c03100. Epub 2022 May 19.

Abstract

Animals execute intelligent and efficient interactions with their surroundings through neural pathways, exhibiting learning, memory, and cognition. Artificial autonomous devices that generate self-optimizing feedback mimicking biological systems are essential in pursuing future intelligent robots. Here, we report an artificial neural pathway (ANP) based on a memristor synapse to emulate neuromorphic learning behaviors. In our ANP, optical stimulations are detected and converted into electrical signals through a flexible perovskite photoreceptor. The acquired electrical signals are further processed in a zeolitic imidazolate frameworks-8 (ZIF-8)-based memristor device. By controlling the growth of the ZIF-8 nanoparticles, the conductance of the memristor can be finely modulated with electrical stimulations to mimic the modulation of synaptic plasticity. The device is employed in the ANP to implement synaptic functions of learning and memory. Subsequently, the synaptic feedbacks are used to direct a robotic arm to perform responding motions. Upon repeatedly "reviewing" the optical stimulation, the ANP is able to learn, memorize, and complete the specific motions. This work provides a promising strategy toward the design of intelligent autonomous devices and bioinspired robots through memristor-based systems.

摘要

动物通过神经通路与周围环境进行智能且高效的互动,展现出学习、记忆和认知能力。能够生成模仿生物系统的自我优化反馈的人工自主设备对于未来智能机器人的发展至关重要。在此,我们报告了一种基于忆阻器突触的人工神经通路(ANP),用于模拟神经形态学习行为。在我们的ANP中,光刺激通过柔性钙钛矿光感受器被检测并转换为电信号。所获取的电信号在基于沸石咪唑酯骨架-8(ZIF-8)的忆阻器器件中进一步处理。通过控制ZIF-8纳米颗粒的生长,忆阻器的电导可以通过电刺激进行精细调制,以模拟突触可塑性的调制。该器件被用于ANP中以实现学习和记忆的突触功能。随后,突触反馈被用于引导机械臂执行响应动作。在反复“回顾”光刺激后,ANP能够学习、记忆并完成特定动作。这项工作为通过基于忆阻器的系统设计智能自主设备和受生物启发的机器人提供了一种有前景的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验