Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
Nat Med. 2022 Jun;28(6):1256-1268. doi: 10.1038/s41591-022-01789-0. Epub 2022 May 19.
Patients with rheumatoid arthritis (RA) receive highly targeted biologic therapies without previous knowledge of target expression levels in the diseased tissue. Approximately 40% of patients do not respond to individual biologic therapies and 5-20% are refractory to all. In a biopsy-based, precision-medicine, randomized clinical trial in RA (R4RA; n = 164), patients with low/absent synovial B cell molecular signature had a lower response to rituximab (anti-CD20 monoclonal antibody) compared with that to tocilizumab (anti-IL6R monoclonal antibody) although the exact mechanisms of response/nonresponse remain to be established. Here, in-depth histological/molecular analyses of R4RA synovial biopsies identify humoral immune response gene signatures associated with response to rituximab and tocilizumab, and a stromal/fibroblast signature in patients refractory to all medications. Post-treatment changes in synovial gene expression and cell infiltration highlighted divergent effects of rituximab and tocilizumab relating to differing response/nonresponse mechanisms. Using ten-by-tenfold nested cross-validation, we developed machine learning algorithms predictive of response to rituximab (area under the curve (AUC) = 0.74), tocilizumab (AUC = 0.68) and, notably, multidrug resistance (AUC = 0.69). This study supports the notion that disease endotypes, driven by diverse molecular pathology pathways in the diseased tissue, determine diverse clinical and treatment-response phenotypes. It also highlights the importance of integration of molecular pathology signatures into clinical algorithms to optimize the future use of existing medications and inform the development of new drugs for refractory patients.
类风湿关节炎 (RA) 患者在接受高度靶向的生物疗法时,事先并不了解患病组织中的靶标表达水平。大约有 40%的患者对个体生物疗法没有反应,而 5-20%的患者对所有生物疗法都没有反应。在一项基于活检的、精准医学的 RA 随机临床试验 (R4RA; n = 164) 中,与托珠单抗 (抗 IL6R 单克隆抗体) 相比,低/无滑膜 B 细胞分子特征的患者对利妥昔单抗 (抗 CD20 单克隆抗体) 的反应较低,尽管确切的反应/无反应机制仍有待确定。在这里,对 R4RA 滑膜活检进行的深入组织学/分子分析确定了与利妥昔单抗和托珠单抗反应相关的体液免疫反应基因特征,以及对所有药物均有耐药性的患者中的基质/成纤维细胞特征。滑膜基因表达和细胞浸润的治疗后变化突出了利妥昔单抗和托珠单抗的不同作用,这与不同的反应/无反应机制有关。使用十乘十倍嵌套交叉验证,我们开发了预测利妥昔单抗 (AUC = 0.74)、托珠单抗 (AUC = 0.68) 反应的机器学习算法,值得注意的是,还开发了多药耐药 (AUC = 0.69) 的算法。这项研究支持这样一种观点,即疾病表型由患病组织中不同的分子病理途径驱动,决定了不同的临床和治疗反应表型。它还强调了将分子病理特征纳入临床算法的重要性,以优化现有药物的未来使用,并为耐药患者开发新药提供信息。