Suppr超能文献

基于圆二色光谱的无序-有序蛋白质二元分类

Disordered-Ordered Protein Binary Classification by Circular Dichroism Spectroscopy.

作者信息

Micsonai András, Moussong Éva, Murvai Nikoletta, Tantos Ágnes, Tőke Orsolya, Réfrégiers Matthieu, Wien Frank, Kardos József

机构信息

ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.

Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.

出版信息

Front Mol Biosci. 2022 May 3;9:863141. doi: 10.3389/fmolb.2022.863141. eCollection 2022.

Abstract

Intrinsically disordered proteins lack a stable tertiary structure and form dynamic conformational ensembles due to their characteristic physicochemical properties and amino acid composition. They are abundant in nature and responsible for a large variety of cellular functions. While numerous bioinformatics tools have been developed for disorder prediction in the last decades, there is a need for experimental methods to verify the disordered state. CD spectroscopy is widely used for protein secondary structure analysis. It is usable in a wide concentration range under various buffer conditions. Even without providing high-resolution information, it is especially useful when NMR, X-ray, or other techniques are problematic or one simply needs a fast technique to verify the structure of proteins. Here, we propose an automatized binary disorder-order classification method by analyzing far-UV CD spectroscopy data. The method needs CD data at only three wavelength points, making high-throughput data collection possible. The mathematical analysis applies the -nearest neighbor algorithm with cosine distance function, which is independent of the spectral amplitude and thus free of concentration determination errors. Moreover, the method can be used even for strong absorbing samples, such as the case of crowded environmental conditions, if the spectrum can be recorded down to the wavelength of 212 nm. We believe the classification method will be useful in identifying disorder and will also facilitate the growth of experimental data in IDP databases. The method is implemented on a webserver and freely available for academic users.

摘要

内在无序蛋白缺乏稳定的三级结构,由于其独特的物理化学性质和氨基酸组成,形成动态的构象集合体。它们在自然界中广泛存在,并负责多种细胞功能。尽管在过去几十年中已经开发了许多用于无序预测的生物信息学工具,但仍需要实验方法来验证无序状态。圆二色光谱(CD光谱)广泛用于蛋白质二级结构分析。它可在各种缓冲条件下的宽浓度范围内使用。即使不提供高分辨率信息,当核磁共振(NMR)、X射线或其他技术存在问题,或者只是需要一种快速技术来验证蛋白质结构时,它也特别有用。在这里,我们提出了一种通过分析远紫外CD光谱数据的自动化二元无序-有序分类方法。该方法仅需要三个波长点的CD数据,从而使高通量数据收集成为可能。数学分析应用具有余弦距离函数的k近邻算法,该算法与光谱幅度无关,因此没有浓度测定误差。此外,如果能记录到212nm波长的光谱,该方法甚至可用于强吸收样品,如拥挤环境条件下的样品。我们相信该分类方法将有助于识别无序状态,也将促进内在无序蛋白数据库中实验数据的增长。该方法在一个网络服务器上实现,可供学术用户免费使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/097c/9110821/b05b4165ebd1/fmolb-09-863141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验